Millipore Sigma Vibrant Logo
 

cell+cycle


1049 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (974)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (970)
  • (3)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Role of histone modifications in marking and activating genes through mitosis. 16199528

    The global inhibition of transcription at the mitotic phase of the cell cycle occurs together with the general displacement of transcription factors from the mitotic chromatin. Nevertheless, the DNase- and potassium permanganate-hypersensitive sites are maintained on potentially active promoters during mitosis, helping to mark active genes at this stage of the cell cycle. Our study focuses on the role of histone acetylation and H3 (Lys-4) methylation in the maintenance of the competency of these active genes during mitosis. To this end we have analyzed histone modifications across the promoters and coding regions of constitutively active, inducible, and inactive genes in mitotic arrested cells. Our results show that basal histone modifications are maintained during mitosis at promoters and coding regions of the active and inducible RNA polymerase II-transcribed genes. In addition we have demonstrated that, together with H3 acetylation and H3 (Lys-4) methylation, H4 (Lys-12) acetylation at the coding regions contributes to the formation of a stable mark on active genes at this stage of the cell cycle. Finally, analysis of cyclin B1 gene activation during mitosis revealed that the former occurs with a strong increase of H3 (Lys-4) trimethylation but not H3 or H4 acetylation, suggesting that histone methyltransferases are active during this stage. These data demonstrate a critical role of histone acetylation and H3 (Lys-4) methylation during mitosis in marking and activating genes during the mitotic stage of the cell cycle.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Apc10 and Ste9/Srw1, two regulators of the APC-cyclosome, as well as the CDK inhibitor Rum1 are required for G1 cell-cycle arrest in fission yeast. 9736616

    Many eukaryotic cells arrest the cell cycle at G1 phase upon nutrient deprivation. In fission yeast, during nitrogen starvation, cells divide twice and arrest at G1. We have isolated a novel type of sterile mutant, which undergoes one additional S phase upon starvation and, as a result, arrests at G2. Three loci (apc10, ste9/srw1 and rum1) were identified. The apc10 mutants, previously unidentified, show, in addition to sterility, temperature-sensitive growth with defects in chromosome segregation. apc10(+) is essential for viability, encodes a conserved protein (a homologue of budding yeast Apc10/Doc1) and is required for ubiquitination and degradation of mitotic B-type cyclins. Apc10 does not co-sediment with the 20S APC-cyclosome, a ubiquitin ligase for B-type cyclins, and in the apc10 mutant the 20S complex is intact, suggesting that it is a novel regulator for this complex. A subpopulation of Apc10 does co-immunoprecipitate with the anaphase-promoting complex (APC). A second gene, ste9(+)/srw1(+), encodes a member of the fizzy-related family, also regulators of the APC. Finally, Rum1 is a cyclin-dependent kinase (CDK) inhibitor which exists only in G1. The results suggest that dual downregulation of CDK, one via the APC and the other via the CDK inhibitor, is a universal mechanism that is used to arrest cell cycle progression at G1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1510
  • MAP kinase regulation of the mitotic spindle checkpoint. 20812004

    Maintaining the integrity of the cell cycle is critical for ensuring that cells only undergo DNA replication and proliferation under controlled conditions in response to discrete stimuli. One mechanism by which the fidelity of this process is guaranteed is through the activation of cell cycle checkpoints. The mitotic spindle checkpoint, which is regulated by Aurora B kinase, ensures proper kinetochore attachment to chromosomes leading to equal distribution of chromosomes to daughter cells. We demonstrated that the mitogen-activated protein kinase (MAPK) cascade regulates mitotic progression and the spindle checkpoint. As demonstrated by immunofluorescence at kinetochores, depletion of Raf Kinase Inhibitory Protein (RKIP), an inhibitor of Raf/MEK/ERK signaling, causes an increase in MAPK activity that inhibits Aurora B kinase activity. By monitoring mitotic index and transit time from nuclear envelope breakdown to anaphase, we demonstrated that RKIP depletion leads to a defective spindle checkpoint and genomic instability, particularly in response to drugs that disrupt microtubule function.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-232
  • Abundance and subcellular localisation of cyclin D3 in human tumours. 8575852

    The D-type cyclins are positive regulators of the G1 phase of the mammalian cell cycle. Cyclins D1 or D2 are over-expressed in several types of cancer, transform rodent cells in culture and therefore harbor hallmarks of cellular proto-oncogenes. In contrast, no data on expression of cyclin D3 in tissues and tumours are presently available. We have raised monoclonal antibodies (MAbs) specific for cyclin D3 and examined abundance and subcellular localisation of this G1 cyclin in a series of human cultured cell types and in 180 primary tumours of diverse histogenesis. Cyclin D3 localised predominantly in nuclei of normal and tumour cells both in culture and in situ, and a pronounced cell-to-cell variation of its abundance was reminiscent of cyclins D1 and D2. Immunohistochemical analysis of tumour and corresponding normal tissues showed strong aberrant accumulation of cyclin D3 in a subset (about 10%) of breast carcinomas, whereas only weak-to-moderate expression was found in colorectal, head and neck and uterine carcinomas, melanomas and soft tissue sarcomas. The specificity of the immunohistochemical data was confirmed by immunoblotting analysis of tissue and tumour lysates. Our results indicate that over-abundance of cyclin D3 is considerably less frequent than that of cyclin D1, yet we identify subsets of breast tumours, and potentially lymphomas, as candidate tumour types with elevated cyclin D3 expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. 16055060

    We have investigated the cell cycle-related mechanisms that lead to the emergence of primate areas 17 and 18. These areas are characterized by striking differences in cytoarchitectonics and neuron number. We show in vivo that (1) area 17 precursors of supragranular neurons exhibit a shorter cell cycle duration, a reduced G1 phase, and a higher rate of cell cycle reentry than area 18 precursors; (2) area 17 and area 18 precursors show contrasting and specific levels of expression of cyclin E (high in area 17, low in area 18) and p27Kip1 (low in area 17, high in area 18); (3) ex vivo up- and downmodulation of cyclin E and p27Kip1 show that both regulators influence cell cycle kinetics by modifying rates of cell cycle progression and cell cycle reentry; (4) modeling the areal differences in cell cycle parameters suggests that they contribute to areal differences in numbers of precursors and neuron production.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-145
    Nombre del producto:
    Anti-phospho-Histone H3 (Ser28) Antibody
  • Transcription factor Sp3 represses expression of p21CIP¹ via inhibition of productive elongation by RNA polymerase II. 23401853

    Like that of many protein-coding genes, expression of the p21(CIP1) cell cycle inhibitor is regulated at the level of transcription elongation. While many transcriptional activators have been shown to stimulate elongation, the mechanisms by which promoter-specific repressors regulate pausing and elongation by RNA polymerase II (RNA PolII) are not well described. Here we report that the transcription factor Sp3 inhibits basal p21(CIP1) gene expression by promoter-bound RNA PolII. Knockdown of Sp3 led to increased p21(CIP1) mRNA levels and reduced occupancy of the negative elongation factor (NELF) at the p21(CIP1) promoter, although the level of binding of the positive transcription elongation factor b (P-TEFb) kinase was not increased. Sp3 depletion correlated with increased H3K36me3 and H2Bub1, two histone modifications associated with transcription elongation. Further, Sp3 was shown to promote the binding of protein phosphatase 1 (PP1) to the p21(CIP1) promoter, leading to reduced H3S10 phosphorylation, a finding consistent with Sp3-dependent regulation of the local balance between kinase and phosphatase activities. Analysis of other targets of Sp3-mediated repression suggests that, in addition to previously described SUMO modification-dependent chromatin-silencing mechanisms, inhibition of the transition of paused RNA PolII to productive elongation, described here for p21(CIP1), is a general mechanism by which transcription factor Sp3 fine-tunes gene expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Studies on the mechanism of resistance to rapamycin in human cancer cells. 9804616

    Rapamycin is a potent cytostatic agent that arrests cells in the G1 phase of the cell cycle. The relationships between cellular sensitivity to rapamycin, drug accumulation, expression of mammalian target of rapamycin (mTOR), and inhibition of growth factor activation of ribosomal p70S6 kinase (p70(S6k)) and dephosphorylation of pH acid stable protein I (eukaryotic initiation factor 4E binding protein) were examined. We show that some cell lines derived from childhood tumors are highly sensitive to growth inhibition by rapamycin, whereas others have high intrinsic resistance (>1000-fold). Accumulation and retention of [14C]rapamycin were similar in sensitive and resistant cells, with all cells examined demonstrating a stable tight binding component. Western analysis showed levels of mTOR were similar in each cell line (<2-fold variation). The activity of p70(S6k), activated downstream of mTOR, was similar in four cell lines (range, 11.75-41. 8 pmol/2 x 10(6) cells/30 min), but activity was equally inhibited in cells that were highly resistant to rapamycin-induced growth arrest. Rapamycin equally inhibited serum-induced phosphorylation of pH acid stable protein I in Rh1 (intrinsically resistant) and sensitive Rh30 cells. In serum-fasted Rh30 and Rh1 cells, the addition of serum rapidly induced c-MYC (protein) levels. Rapamycin blocked induction in Rh30 cells but not in Rh1 cells. Serum-fasted Rh30/rapa10K cells, selected for high level acquired resistance to rapamycin, showed >/=10-fold increased c-MYC compared with Rh30. These results suggest that the ability of rapamycin to inhibit c-MYC induction correlates with intrinsic sensitivity, whereas failure of rapamycin to inhibit induction or overexpression of c-MYC correlates with intrinsic and acquired resistance, respectively.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABS196
    Nombre del producto:
    Anti-mTOR/FRAP Antibody, clone 22C2
  • LINC00037 Inhibits Proliferation of Renal Cell Carcinoma Cells in an Epidermal Growth Factor Receptor-Dependent Way. 29393141

    LINC00037 has previously been reported to be up-regulated in clear cell renal cell carcinoma (ccRCC), however, the underlying mechanism remained unknown. In this study, we designed to investigate the functional role of LINC00037 in ccRCC Methods: LINC00037 knockdown and re-expressing 786-O and A498 cells were established. CCK8 assay and EdU assay were performed to evaluate the proliferation rates of ccRCC cells. Flow cytometry assay was performed to detect the cell apoptosis and cell cycle. Subcutaneous injection xenotransplantation mouse model was used to observe the role of LINC00037 in tumor growth in vivo. Mass spectrometry (MS) was performed to find the interacting partner of LINC00037 and RNA immunoprecipitation (RIP) was carried out to validate their interaction.We found that knockdown of LINC00037 resulted in inhibited cell proliferation with activated apoptosis and cell cycle arrest in vitro. Over-expression of LINC00037 in LINC00037 knockdown cells restored and enhanced cell proliferation. In vivo mouse model indicated reduced tumor progression by LINC00037 depletion and promoted tumor progression by LINC00037 overexpression. LINC00037 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR.LINC00037 could inhibit proliferation of ccRCC in an epidermal growth factor receptor-dependent way.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-700
    Nombre del producto:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • R-Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair. 20684776

    CDK-inhibitors can diminish transcriptional levels of cell cycle-related cyclins through the inhibition of E2F family members and CDK7 and 9. Cyclin A1, an E2F-independent cyclin, is strongly upregulated under genotoxic conditions and functionally was shown to increase NHEJ activity. Cyclin A1 outcompetes with cyclin A2 for CDK2 binding, possibly redirecting its activity towards DNA repair. To see if we could therapeutically block this switch, we analyzed the effects of the CDK-inhibitor R-Roscovitine on the expression levels of cyclin A1 under genotoxic stress and observed subsequent DNA damage and repair mechanisms.We found that R-Roscovitine alone was unable to alter cyclin A1 transcriptional levels, however it was able to reduce protein expression through a proteosome-dependent mechanism. When combined with DNA damaging agents, R-Roscovitine was able to prevent the DNA damage-induced upregulation of cyclin A1 on a transcriptional and post-transcriptional level. This, moreover resulted in a significant decrease in non-homologous end-joining (NHEJ) paired with an increase in DNA DSBs and overall DNA damage over time. Furthermore, microarray analysis demonstrated that R-Roscovitine affected DNA repair mechanisms in a more global fashion.Our data reveal a new mechanism of action for R-Roscovitine on DNA repair through the inhibition of the molecular switch between cyclin A family members under genotoxic conditions resulting in reduced NHEJ capability.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • Involvement of glycogen synthase kinase-3beta signaling and aberrant nucleocytoplasmic localization of retinoblastoma protein in tumor promotion in a rat two-stage thyroi ... 19505811

    To investigate the cell cycle kinetics during the tumor promotion process induced by hypothyroidism in a rat model of thyroid follicular cell carcinogenesis, immunohistochemical analysis of cell cycle molecules and related signaling molecules was performed in conjunction with analysis of cell proliferation activity in an initiation-promotion model. Male F344 rats were injected with N-bis(2-hydroxypropyl)nitrosamine, and one week later treated with 6-propyl-2-thiouracil (PTU) at 12ppm in the drinking water for 4, 10 or 15 weeks. At each time point, proliferative lesions increased the expression of cyclin A, cyclin D, cyclin E and cyclin-dependent kinase (Cdk)-2, in association with the development of lesion stages from the early focal hyperplasia to the late carcinoma, while a subpopulation of proliferative lesions showed decreased numbers of both cell division cycle-2- and Ki-67-positive cells at week 15 compared with that at week 10, suggesting a reduced promoting effect of serum thyroid-stimulating hormone in the sensitive cellular population after long-term exposure to PTU. On the other hand, increased immunolocalization of phosphorylated and inactive glycogen synthase kinase (GSK)-3beta was observed in a subpopulation of proliferative lesions, in parallel with the cyclins and Cdk2. Nuclear immunoreactivity of phosphorylated and inactive retinoblastoma (Rb) protein was also increased in association with lesion development, with carcinomas showing increased cytoplasmic localization. The results suggest that proliferative lesions activate the cell cycle machinery following tumor promotion via a regulatory mechanism involving inactivation of GSK3beta and Rb protein, the latter signaling mechanism involving its aberrant nucleocytoplasmic transport for the acquisition of a malignant phenotype.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-137