Millipore Sigma Vibrant Logo
 

secretagogue


35 Results Advanced Search  
Showing
Documents (33)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Pic, an autotransporter protein secreted by different pathogens of Enterobacteriaceae family, is a potent mucus secretagogue. 20696826

    A hallmark of enteroaggregative Escherichia coli (EAEC) infection is a formation of biofilm, which comprises a mucus layer with immersed bacteria in the intestine of patients. While studying the mucinolytic activity of Pic in an in vivo system such as the rat ileal loops, we surprisingly found that EAEC induced a hypersecretion of mucus, which is accompanied by an increase in the number of mucus containing goblet cells. Interestingly, an isogenic pic mutant (EAECDeltapic) was unable to cause this mucus hypersecretion. Furthermore, purified Pic was also able to induce intestinal mucus hypersecretion and this effect was abolished when Pic was heat denatured. Site-directed mutagenesis in the serine protease catalytic residue of Pic showed that, unlike the mucinolytic activity, secretagogue activity did not depend on this catalytic serine protease motif. Other pathogens harboring the pic gene, such as Shigella flexneri and uropathogenic E. coli (UPEC), also showed similar results to those caused by EAEC and constructions of isogenic pic mutants in S. flexneri and UPEC confirmed this secretagogue activity. Thus, Pic mucinase is responsible for one of the pathophysiologic features of the diarrhea mediated by EAEC and the mucoid diarrhea induced by S. flexneri.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Proteomic analysis of secretagogue-stimulated neutrophils implicates a role for actin and actin-interacting proteins in Rac2-mediated granule exocytosis. 22081935

    Neutrophils are abundant leukocytes that play a primary role in defence against pathogens. Neutrophils enter sites of infection where they eliminate pathogens via phagocytosis and the release of antimicrobial mediators via degranulation. Rho GTPases, particularly Rac2, play a key role in neutrophil degranulation. The purpose of this study was to identify Rac2-dependent changes in protein abundance in stimulated neutrophils.We performed a proteomic analysis on secretagogue-stimulated bone marrow neutrophils that were isolated from wild-type and Rac2-/- mice. Protein abundance was analyzed by 2-dimensional SDS-PAGE of fluorescently labelled samples which allowed the detection ~3500 proteins.We identified 22 proteins that showed significant changes in abundance after secretagogue-stimulation of wild-type neutrophils, which did not occur in neutrophils isolated from Rac2-/- mice. As expected, the abundance of several granule proteins was reduced in wild-type cells; this did not occur in Rac2-/- neutrophils which confirms the requirement for Rac2 in degranulation. We also found changes in abundance of many actin remodelling proteins including coronin-1A, β-actin and the F-actin capping protein, (CapZ-β). Coronin-1A showed elevated levels of several isoforms after stimulation of neutrophils from wild-type, but not from Rac2-/- mice. These isoforms were immunoreactive with anti-phospho-threonine antibodies, suggesting that neutrophil stimulation triggers a Rac2-dependent kinase cascade that results in the phosphorylation of coronin-1A.The control of Rac2-mediated degranulation in neutrophils likely functions through actin remodelling via activation of several actin-binding proteins. We found coronin-1A to be a novel downstream effector protein of this pathway that is threonine phosphorylated in response to secretagogue stimulation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Phospholipase D1 regulates secretagogue-stimulated insulin release in pancreatic beta-cells. 15087463

    Phospholipase D (PLD) has been strongly implicated in the regulation of Golgi trafficking as well as endocytosis and exocytosis. Our aim was to investigate the role of PLD in regulating the biphasic exocytosis of insulin from pancreatic beta-cells that is essential for mammalian glucose homeostasis. We observed that PLD activity in MIN6 pancreatic beta-cells is closely coupled to secretion. Cellular PLD activity was increased in response to a variety of secretagogues including the nutrient glucose and the cholinergic receptor agonist carbamoylcholine. Conversely, pharmacological or hormonal inhibition of stimulated secretion reduced PLD activity. Most importantly, blockade of PLD-catalyzed phosphatidic acid formation using butan-1-ol inhibited insulin secretion in both MIN6 cells and isolated pancreatic islets. It was further established that PLD activity was required for both the first and the second phase of glucose-stimulated insulin release, suggesting a role in the very distal steps of exocytosis, beyond granule recruitment into a readily releasable pool. Visualization of granules using green fluorescent protein-phogrin confirmed a requirement for PLD prior to granule fusion with the plasma membrane. PLD1 was shown to be the predominant isoform in MIN6 cells, and it was located at least partially on insulin granules. Overexpression of wild-type or a dominant negative catalytically inactive mutant of PLD1 augmented or inhibited secretagogue-stimulated secretion, respectively. The results suggest that phosphatidic acid formation on the granule membrane by PLD1 is essential for the regulated secretion of insulin from pancreatic beta-cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachi ... 10318801

    An 84-kDa group VI phospholipase A2 (iPLA2) that does not require Ca2+ for catalysis has been cloned from Chinese hamster ovary cells, murine P388D1 cells, and pancreatic islet beta-cells. A housekeeping role for iPLA2 in generating lysophosphatidylcholine (LPC) acceptors for arachidonic acid incorporation into phosphatidylcholine (PC) has been proposed because iPLA2 inhibition reduces LPC levels and suppresses arachidonate incorporation and phospholipid remodeling in P388D1 cells. Because islet beta-cell phospholipids are enriched in arachidonate, we have examined the role of iPLA2 in arachidonate incorporation into islets and INS-1 insulinoma cells. Inhibition of iPLA2 with a bromoenol lactone (BEL) suicide substrate did not suppress and generally enhanced [3H]arachidonate incorporation into these cells in the presence or absence of extracellular calcium at varied time points and BEL concentrations. Arachidonate incorporation into islet phospholipids involved deacylation-reacylation and not de novo synthesis, as indicated by experiments with varied extracellular glucose concentrations and by examining [14C]glucose incorporation into phospholipids. BEL also inhibited islet cytosolic phosphatidate phosphohydrolase (PAPH), but the PAPH inhibitor propranolol did not affect arachidonate incorporation into islet or INS-1 cell phospholipids. Inhibition of islet iPLA2 did not alter the phospholipid head-group classes into which [3H]arachidonate was initially incorporated or its subsequent transfer from PC to other lipids. Electrospray ionization mass spectrometric measurements indicated that inhibition of INS-1 cell iPLA2 accelerated arachidonate incorporation into PC and that inhibition of islet iPLA2 reduced LPC levels by 25%, suggesting that LPC mass does not limit arachidonate incorporation into islet PC. Gas chromatography/mass spectrometry measurements indicated that BEL but not propranolol suppressed insulin secretagogue-induced hydrolysis of arachidonate from islet phospholipids. In islets and INS-1 cells, iPLA2 is thus not required for arachidonate incorporation or phospholipid remodeling and may play other roles in these cells.
    Document Type:
    Reference
    Product Catalog Number:
    07-169
  • Short communication: change in plasma ghrelin in dairy cows following an intravenous glucose challenge. 18292256

    Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor and a potent orexigenic (appetite-stimulating) agent in humans and rodents, but little is known about its effect in dairy cows. Ten multiparous dairy cows 35 d in milk were subjected to an i.v. glucose challenge (300 mg of D-glucose/kg of body weight). Before infusion and at regular intervals after infusion, plasma glucose, insulin, nonesterified fatty acids (NEFA), growth hormone, epinephrine, and ghrelin concentrations were monitored. Plasma insulin rose (27.2 mU/L at 10 min) and NEFA, epinephrine, and ghrelin declined (nadir = 0.22 mmol/L, 22.2 microg/L, and 272 microg/L at 31, 13, and 22 min, respectively) after the glucose infusion. Ghrelin declined for 22 min before returning to suprabasal levels at approximately 75 min postinfusion. Sequential changes of the hormones and metabolites suggested a glucose transporter, type 2- and glucose transporter, type 4-mediated disposal of glucose, and an insulin-mediated reduction in NEFA. Ghrelin and epinephrine declined after glucose infusion and before the insulin peak, but the effect of insulin as a controlling factor in the hyperglycemic reduction in these hormones cannot be discounted. The post-nadir surge in ghrelin may be regulated by the decline in circulating concentrations of glucose and NEFA (an energy-deficit signal). The profile of change in plasma ghrelin in lactating dairy cows after a glucose challenge was similar to that in monogastric animals.
    Document Type:
    Reference
    Product Catalog Number:
    GHRA-88HK
    Product Catalog Name:
    Human Ghrelin (ACTIVE) RIA
  • Long-term infusions of ghrelin and obestatin in early lactation dairy cows. 19038949

    Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor and a potential orexigenic agent in monogastrics and ruminants. Obestatin has been reported to have the opposite (anorexigenic) effect. Fifty one multiparous cows were randomly allocated to 1 of 3 groups (n = 17): a control group and 2 groups with cows continuously infused with 0.74 mumol/d of ghrelin (GHR group) or obestatin (OBE group) subcutaneously. Infusions began 21 d in milk, and treatments continued for 8 wk. Generalized linear models were used to determine the treatment effect on average daily and cumulative milk production and composition, and plasma ghrelin, growth hormone, insulin-like growth factor (IGF)-1, leptin, nonesterified fatty acids, and glucose. Mixed models, with cow included as a repeated effect, were used to determine if treatment effects differed by week postcalving for milk production, body weight, and body condition score (BCS; scale 1 to 10). Parity, breed, week of the year at calving, treatment, week postcalving, and the 2 wk preexperimental average of each measure (covariate) were included as fixed effects. Treatment did not affect dry matter intake. Cows infused with GHR lost more BCS (-0.71 units) over the 8-wk study period than the control (-0.23 BCS units) cows, and on average were thinner than cows in either of the other 2 treatments (0.2 BCS units). Consistent with the extra BCS loss in GHR cows, plasma IGF-1, glucose, and leptin concentrations were reduced and plasma nonesterified fatty acid concentrations were greater in GHR cows. Despite a numerical tendency for GHR cows to produce more milk (1,779 kg) than control (1,681 kg) or OBE (1,714 kg) cows during the 8-wk period, milk production differences were not statistically different. However, the timing of the numerical separation of the lactation curves coincided with the significant changes in BCS, IGF-1, and leptin. Results indicate a positive effect of ghrelin infusion on lipolysis. Further research is required to determine if the numerical increase in milk production, which coincides with the increased negative energy balance, is real.
    Document Type:
    Reference
    Product Catalog Number:
    GHRA-88HK
    Product Catalog Name:
    Human Ghrelin (ACTIVE) RIA
  • Upregulation of voltage-gated calcium channel cav1.3 in bovine somatotropes treated with ghrelin. 24455243

    Activation of the growth hormone (GH) secretagogue receptor (GHS-R) by synthetic GH releasing peptides (GHRP) or its endogenous ligand (Ghrelin) stimulates GH release. Though much is known about the signal transduction underlying short-term regulation, there is far less information on the mechanisms that produce long-term effects. In the current report, using an enzyme-linked immunosorbent assay for GH detection and whole-cell patch-clamp recordings, we assessed the long-term actions of such regulatory factors on voltage-activated Ca(2+) currents in bovine somatotropes (BS) separated on a Percoll gradient and detected by immunohistochemistry. After 24 h of treatment with Ghrelin (10 nM) or GHRP-6 (100 nM) enhanced BS secretory activity; GH secretion stimulated by GHS through the activation of GHS-R because treatment with the antagonist of GHS-R (D-Lys3-GHRP-6, 10 μM) blocked the GH secretion, and the effect was dose and time dependent (24, 48, and 72 h). GH secretion stimulated by GHRP-6 was abolished by nifedipine (0.5 μM), a blocker of L-type HVA Ca(2+) channels, and KN-62 (10 μM), an inhibitor of Ca(2+)/CaM-KII. After 72 h in culture, all recorded BS exhibited two main Ca(2+) currents: a low voltage-activated (LVA; T-type) and a high voltage-activated (HVA; mostly dihydropyridine-sensitive L-type) current. Interestingly, HVA and LVA channels were differentially upregulated by Ghrelin. Chronic treatment with the GHS induced a significant selective increase on the Ba(2+) current through HVA Ca(2+) channels, and caused only a small increase of currents through LVA channels. The stimulatory effect on HVA current density was accompanied by an augment in maximal conductance with no apparent changes in the kinetics and the voltage dependence of the Ca(2+) currents, suggesting an increase in the number of functional channels in the cell membrane. Lastly, in consistency with the functional data, quantitative real-time RT-PCR revealed transcripts encoding for the Cav1.2 and Cav1.3 pore-forming subunits of L-type channels. The treatment with Ghrelin significantly increased the Cav1.3 subunit expression, suggeting that the chronic stimulation of the GHS receptor with Ghrelin or GHRP-6 increases the number of voltage-gated Ca(2+) channels at the cell surface of BS.
    Document Type:
    Reference
    Product Catalog Number:
    AB940
  • Growth hormone-releasing peptide hexarelin reduces neonatal brain injury and alters Akt/glycogen synthase kinase-3beta phosphorylation. 16081643

    Hexarelin (HEX) is a peptide GH secretagogue with a potent ability to stimulate GH secretion and recently reported cardioprotective actions. However, its effects in the brain are largely unknown, and the aim of the present study was to examine the potential protective effect of HEX on the central nervous system after injury, as well as on caspase-3, Akt, and extracellular signal-regulated protein kinase (ERK) signaling cascades in a rat model of neonatal hypoxia-ischemia. Hypoxic-ischemic insult was induced by unilateral carotid ligation and hypoxic exposure (7.7% oxygen), and HEX treatment was administered intracerebroventricularly, directly after the insult. Brain damage was quantified at four coronal levels and by regional neuropathological scoring. Brain damage was reduced by 39% in the treatment group, compared with vehicle group, and injury was significantly reduced in the cerebral cortex, hippocampus, and thalamus but not in the striatum. The cerebroprotective effect was accompanied by a significant reduction of caspase-3 activity and an increased phosphorylation of Akt and glycogen synthase kinase-3beta, whereas ERK was unaffected. In conclusion, we demonstrate for the first time that HEX is neuroprotective in the neonatal setting in vivo and that increased Akt signaling is associated with downstream attenuation of glycogen synthase kinase-3beta activity and caspase-dependent cell death.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Comparison of Competitive Radioimmunoassays and Two-Site Sandwich Assays for the Measurement and Interpretation of Plasma Ghrelin Levels. 20194708

    Context: Ghrelin, an endogenous ligand for the GH secretagogue receptor, is an orexigenic peptide hormone produced primarily by the stomach. Recent studies suggest significant differences in the specificity of currently available ghrelin assays. Objective: The aim of the study was to compare four ghrelin assays (two commercially available and two developed by our group) of differing specificity, each used on the same set of more than 800 plasma samples from a human study. Design: Thirteen volunteers were sampled every 20 min for 6 h after consumption of one of three isocaloric drinks consisting of either 80% fat, 80% carbohydrate, or 80% protein. The samples were assayed by RIA for total and active ghrelin, as well as by sandwich assays for acyl and des-acyl ghrelin. The ghrelin profiles for each individual were smoothed using a statistical algorithm to lessen the effects of pulsatility and noise. Results: The sandwich assays for acyl and des-acyl ghrelin yielded ghrelin values that were lower than those from the corresponding RIAs. The ghrelin profiles after nutrient ingestion were similar, yet key differences among the four assays were apparent; in particular, percentage changes were significantly greater in the sandwich assays. Conclusions: The lower levels and greater relative changes in ghrelin values reported by the sandwich assays are consistent with greater assay specificity. When applied to the nutrient study, the sandwich assays were better able to distinguish the different responses to different nutrients than were the RIAs.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The role of C-terminal part of ghrelin in pharmacokinetic profile and biological activity in rats. 21291937

    Ghrelin is an endogenous ligand for growth hormone secretagogue receptor 1a (GHS-R1a), and consists of 28 amino acid residues with octanoyl modification at Ser(3). The previous studies have revealed that N-terminal part of ghrelin including modified Ser(3) is the active core for the activation of GHS-R1a. On the other hand, the role of C-terminal (8-28) region in ghrelin has not been clarified yet. In the present study, we prepared human ghrelin, C-terminal truncated ghrelin derivatives and anamorelin, a small molecular GHS compound which supposedly mimics the N-terminal active core, and examined GHS-R1a agonist activity in vitro, pharmacokinetic (PK) profile and growth hormone (GH) releasing activity in rats. All compounds demonstrated potent GHS-R1a agonist activities in vitro. Although the lack of C-terminal two amino acids did not modify PK profile and GH releasing activity, the deletion of C-terminal 8 and 20 amino acids affected them, and ghrelin(1-7)-Lys-NH(2) exhibited very short plasma half-life and low GH releasing activity in vivo. In rat plasma, ghrelin(1-7)-Lys-NH(2) was degraded more rapidly than ghrelin, suggesting that C-terminal part of ghrelin protected octanoylation of Ser(3) from plasma esterases. Subdiaphragmatic vagotomy significantly attenuated GH response to ghrelin but not to anamorelin. These results suggest that the C-terminal part of ghrelin has an important role in the biological activity in vivo. We also found that ghrelin stimulated GH release mainly via a vagal nerve pathway but anamorelin augmented GH release possibly by directly acting on brain in rats.
    Document Type:
    Reference
    Product Catalog Number:
    EZRMGH-45K
    Product Catalog Name:
    Rat/Mouse Growth Hormone ELISA