Millipore Sigma Vibrant Logo
 

gaba-a


1611 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (835)
  • (697)
  • (12)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underly ... 16754670

    Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABA(A) receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABA(A) receptor trafficking and function, its role in BDNF-dependent modulation of these receptors, together with the role of PRIP-2, was investigated using neurons cultured from PRIP double knock-out mice. The BDNF-dependent inhibition of whole cell GABA-evoked currents observed in wild type neurons was not detected in neurons cultured from knock-out mice. Instead, a gradual increase in GABA-evoked currents in these neurons correlated with a gradual increase in phosphorylation of GABA(A) receptor beta3 subunit in response to BDNF. To characterize the specific role(s) that PRIP plays as components of underlying molecular machinery, we examined the recruitment of protein phosphatase(s) to GABA(A) receptors. We demonstrate that PRIP associates with phosphatases as well as with beta subunits. PRIP was found to colocalize with GABA(A) receptor clusters in cultured neurons and with recombinant GABA(A) receptors when co-expressed in HEK293 cells. Importantly, a peptide mimicking a domain of PRIP involved in binding to beta subunits disrupted the co-localization of these proteins in HEK293 cells and potently inhibited the BDNF-mediated attenuation of GABA(A) receptor currents in wild type neurons. Together, the results suggest that PRIP plays an important role in BDNF-dependent regulation of GABA(A) receptors by mediating the specific association between beta subunits of these receptors with protein phosphatases.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. 11528422

    Controlling the number of functional gamma-aminobutyric acid A (GABA(A)) receptors in neuronal membranes is a crucial factor for the efficacy of inhibitory neurotransmission. Here we describe the direct interaction of GABA(A) receptors with the ubiquitin-like protein Plic-1. Furthermore, Plic-1 is enriched at inhibitory synapses and is associated with subsynaptic membranes. Functionally, Plic-1 facilitates GABA(A) receptor cell surface expression without affecting the rate of receptor internalization. Plic-1 also enhances the stability of intracellular GABA(A) receptor subunits, increasing the number of receptors available for insertion into the plasma membrane. Our study identifies a previously unknown role for Plic-1, a modulation of GABA(A) receptor cell surface number, which suggests that Plic-1 facilitates accumulation of these receptors in dendritic membranes.
    Document Type:
    Reference
    Product Catalog Number:
    MAB341
    Product Catalog Name:
    Anti-GABA A Receptor β 2,3 Chain Antibody, clone BD17
  • GABA(A) receptor downregulation in brains of subjects with autism. 18821008

    Gamma-aminobutyric acid A (GABA(A)) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABA(A) receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABA(A) receptor subunit expression in the three brain areas. Our results demonstrate that GABA(A) receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism.
    Document Type:
    Reference
    Product Catalog Number:
    06-868
    Product Catalog Name:
    Anti-GABAA Receptor α1 Antibody
  • GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. 17715349

    Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA(A) receptors. Here, we demonstrate that during a developmental period when activation of GABA(A) receptors causes membrane depolarization, tonic activation of GABA(A) receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA(A) receptor agonist muscimol blocked spontaneous correlated increases in intracellular calcium concentration and compound postsynaptic currents in RGCs associated with retinal waves. In addition, GABA(A) receptor agonists activated a tonic current in RGCs that significantly reduced their excitability. Using a transgenic mouse in which green fluorescent protein is expressed under the metabotropic glutamate receptor subtype 2 promoter to target recordings from SACs, we found that GABA(A) receptor agonists blocked compound postsynaptic currents and also activated a tonic current. GABA(A) receptor antagonists reduced the holding current in SACs but not RGCs, indicating that ambient levels of GABA tonically activate GABA(A) receptors in SACs. GABA(A) receptor antagonists did not block retinal waves but did alter the frequency and correlation structure of spontaneous RGC firing. Interestingly, the drug aminophylline, a general adenosine receptor antagonist used to block retinal waves, induced a tonic GABA(A) receptor antagonist-sensitive current in outside-out patches excised from RGCs, indicating that aminophylline exerts its action on retinal waves by direct activation of GABA(A) receptors. These findings have implications for how various neuroactive drugs and neurohormones known to modulate extrasynaptic GABA(A) receptors may influence spontaneous firing patterns that are critical for the establishment of adult neural circuits.
    Document Type:
    Reference
    Product Catalog Number:
    AB144P
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody
  • GABA(A) receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. 22506070

    Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • GABA-A channel subunit expression in human glioma correlates with tumor histology and clinical outcome. 22615883

    GABA (γ-aminobutyric acid) is the main inhibitory neurotransmitter in the CNS and is present in high concentrations in presynaptic terminals of neuronal cells. More recently, GABA has been ascribed a more widespread role in the control of cell proliferation during development where low concentrations of extrasynaptic GABA induce a tonic activation of GABA receptors. The GABA-A receptor consists of a ligand-gated chloride channel, formed by five subunits that are selected from 19 different subunit isoforms. The functional and pharmacological properties of the GABA-A channels are dictated by their subunit composition. Here we used qRT-PCR to compare mRNA levels of all 19 GABA-A channel subunits in samples of human glioma (n = 29) and peri-tumoral tissue (n = 5). All subunits except the ρ1 and ρ3 subunit were consistently detected. Lowest mRNA levels were found in glioblastoma compared to gliomas of lower malignancy, except for the θ subunit. The expression and cellular distribution of the α1, γ1, ρ2 and θ subunit proteins was investigated by immunohistochemistry on tissue microarrays containing 87 gliomas grade II. We found a strong co-expression of ρ2 and θ subunits in both astrocytomas (r = 0.86, pless than 0.0001) and oligodendroglial tumors (r = 0.66, pless than 0.0001). Kaplan-Meier analysis and Cox proportional hazards modeling to estimate the impact of GABA-A channel subunit expression on survival identified the ρ2 subunit (p = 0.043) but not the θ subunit (p = 0.64) as an independent predictor of improved survival in astrocytomas, together with established prognostic factors. Our data give support for the presence of distinct GABA-A channel subtypes in gliomas and provide the first link between specific composition of the A-channel and patient survival.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • GABA(A) receptors can initiate the formation of functional inhibitory GABAergic synapses. 23909897

    The mechanisms that underlie the selection of an inhibitory GABAergic axon's postsynaptic targets and the formation of the first contacts are currently unknown. To determine whether expression of GABAA receptors (GABAA Rs) themselves--the essential functional postsynaptic components of GABAergic synapses--can be sufficient to initiate formation of synaptic contacts, a novel co-culture system was devised. In this system, the presynaptic GABAergic axons originated from embryonic rat basal ganglia medium spiny neurones, whereas their most prevalent postsynaptic targets, i.e., α1/β2/γ2-GABAA Rs, were expressed constitutively in a stably transfected human embryonic kidney 293 (HEK293) cell line. The first synapse-like contacts in these co-cultures were detected by colocalization of presynaptic and postsynaptic markers within 2 h. The number of contacts reached a plateau at 24 h. These contacts were stable, as assessed by live cell imaging; they were active, as determined by uptake of a fluorescently labelled synaptotagmin vesicle-luminal domain-specific antibody; and they supported spontaneous and action potential-driven postsynaptic GABAergic currents. Ultrastructural analysis confirmed the presence of characteristics typical of active synapses. Synapse formation was not observed with control or N-methyl-d-aspartate receptor-expressing HEK293 cells. A prominent increase in synapse formation and strength was observed when neuroligin-2 was co-expressed with GABAA Rs, suggesting a cooperative relationship between these proteins. Thus, in addition to fulfilling an essential functional role, postsynaptic GABAA Rs can promote the adhesion of inhibitory axons and the development of functional synapses.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • AMPA and GABA(A/B) receptor subunit expression in the cortex of adult squirrel monkeys during peripheral nerve regeneration. 23643858

    The primate somatosensory neuroaxis provides a highly translational model system with which to investigate adult neural plasticity. Here, we report immunohistochemical staining data for AMPA and GABAA/B receptor subunits in the area 3b cortex of adult squirrel monkeys one and five months after median nerve compression. This method of nerve injury was selected because it allows unique insight into how receptor expression changes during the regeneration of the peripheral nerve. One month after nerve compression, the pattern of subunit staining provides evidence that the cortex enters a state of reorganization. GABA α1 receptor subunits are significantly down-regulated in layer IV, V, and VI. Glur2/3 AMPA receptor subunits and postsynaptic GABABR1b receptor subunits are up and down regulated respectively across all layers of cortex. After five months of recovery from nerve compression, the pattern of AMPA and GABAA/B receptor subunits remain significantly altered in a layer specific manner. In layer II/III, GluR1, GluR2/3, and GABA α1 subunit expression is significantly up-regulated while post synaptic GABABR1b receptor subunits are significantly down regulated. In layer VI, V, and VI the GluR2/3 and presynaptic GABABR1a receptor subunits are significantly up-regulated, while the postsynaptic GABABR1b receptor subunits remain significantly down-regulated. Taken together, these results suggest that following nerve injury the cortex enters a state of reorganization that has persistent effects on cortical plasticity even after partial or total reinnervation of the peripheral nerve.
    Document Type:
    Reference
    Product Catalog Number:
    05-855R
    Product Catalog Name:
    Anti-GluR1 Antibody, Recombinant, rabbit monoclonal
  • GABA(A) receptor subunits in the rat hippocampus I: immunocytochemical distribution of 13 subunits. 9284055

    The GABA(A) receptor is a ligand-operated chloride channel. It has a pentameric structure. In mammalian brain different subunits are recruited from four gene subfamilies. Using immunocytochemistry, we investigated the distribution of the 13 GABA(A) receptor subunits in the hippocampus of the rat. GABA(A) receptor subunits were heterogeneously distributed within different hippocampal subfields. High concentrations of alpha1-, alpha2-, alpha4-, beta3-, gamma2- and delta-immunoreactivities were observed within the molecular layer of the dentate gyrus, representing the dendritic area of the granule cells. In the hippocampus proper, the predominant GABA(A) receptor subunits were alpha1, alpha2, alpha5, beta3 and gamma2 that were located throughout the strata radiatum and oriens of CA1 to CA3. Immunocytochemical staining was there less prominent for alpha4-, beta1-, beta2- gamma3- and delta- subunits. In the hippocampus proper, the beta1 subunit was preferentially located in CA2. The alpha4- and delta-subunits were somewhat more abundant in CA1 than in CA3. Numerous local circuit neurons in the hippocampus proper and the hilus of the dentate gyrus contained alpha1-, beta2-, gamma2- and/or delta-subunits. Alpha3 and gamma1 were present only in minute amounts and no alpha6-IR was detected in the hippocampal formation. The distribution of the GABA(A) receptor subunits indicates the existence of heterogenously constituted GABA(A) receptor complexes within various hippocampal subfields, which may exert different physiological or pharmacological properties upon stimulation by GABA or its agonists.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • GABA(A) receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild ty ... 20551311

    A GABA(A) receptor (GABA(A)R) alpha1 subunit mutation, A322D (AD), causes an autosomal dominant form of juvenile myoclonic epilepsy (ADJME). Previous studies demonstrated that the mutation caused alpha1(AD) subunit misfolding and rapid degradation, reducing its total and surface expression substantially. Here, we determined the effects of the residual alpha1(AD) subunit expression on wild type GABA(A)R expression to determine whether the AD mutation conferred a dominant negative effect. We found that although the alpha1(AD) subunit did not substitute for wild type alpha1 subunits on the cell surface, it reduced the surface expression of alpha1beta2gamma2 and alpha3beta2gamma2 receptors by associating with the wild type subunits within the endoplasmic reticulum and preventing them from trafficking to the cell surface. The alpha1(AD) subunit reduced surface expression of alpha3beta2gamma2 receptors by a greater amount than alpha1beta2gamma2 receptors, thus altering cell surface GABA(A)R composition. When transfected into cultured cortical neurons, the alpha1(AD) subunit altered the time course of miniature inhibitory postsynaptic current kinetics and reduced miniature inhibitory postsynaptic current amplitudes. These findings demonstrated that, in addition to causing a heterozygous loss of function of alpha1(AD) subunits, this epilepsy mutation also elicited a modest dominant negative effect that likely shapes the epilepsy phenotype.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple