Proteins from formalin-fixed paraffin-embedded prostate cancer sections that predict the risk of metastatic disease. Dunne, JC; Lamb, DS; Delahunt, B; Murray, J; Bethwaite, P; Ferguson, P; Nacey, JN; Sondhauss, S; Jordan, TW Clinical proteomics
12
24
2015
概要を表示する
Prostate cancer is the most frequently diagnosed cancer in men and the third leading cause of cancer related deaths among men living in developed countries. Biomarkers that predict disease outcome at the time of initial diagnosis would substantially aid disease management.Proteins extracted from formalin-fixed paraffin-embedded tissue were identified using nanoflow liquid chromatography-MALDI MS/MS or after separation by one- or two-dimensional electrophoresis. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000963. A list of potential biomarker candidates, based on proposed associations with prostate cancer, was derived from the 320 identified proteins. Candidate biomarkers were then examined by multiplexed Western blotting of archival specimens from men with premetastatic disease and subsequent disease outcome data. Annexin A2 provided the best prediction of risk of metastatic disease (log-rank Chi squared p = 0. 025). A tumor/control tissue greater than 2-fold relative abundance increase predicted early biochemical failure, while less than 2-fold change predicted late or no biochemical failure.This study confirms the potential for use of archival FFPE specimens in the search for prognostic biomarkers for prostate cancer and suggests that annexin A2 abundance in diagnostic biopsies is predictive for metastatic potential. Protein profiling each cancer may lead to an overall reduction in mortality from metastatic prostate cancer as well as reduced treatment associated morbidity. | | | 26388710
|
Insulin demand regulates β cell number via the unfolded protein response. Sharma, RB; O'Donnell, AC; Stamateris, RE; Ha, B; McCloskey, KM; Reynolds, PR; Arvan, P; Alonso, LC The Journal of clinical investigation
125
3831-46
2015
概要を表示する
Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generated from proliferation of mature, differentiated β cells; however, the mechanism by which these mature cells sense systemic insulin demand and initiate a proliferative response remains unknown. Here, we identified the β cell unfolded protein response (UPR), which senses insulin production, as a regulator of β cell proliferation. Using genetic and physiologic models, we determined that among the population of β cells, those with an active UPR are more likely to proliferate. Moreover, subthreshold endoplasmic reticulum stress (ER stress) drove insulin demand-induced β cell proliferation, through activation of ATF6. We also confirmed that the UPR regulates proliferation of human β cells, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes. Together, this work defines a stem cell-independent model of tissue homeostasis, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand. | | | 26389675
|
A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies. Chen, HK; Song, SN; Wang, LH; Mayfield, AB; Chen, YJ; Chen, WN; Chen, CS PloS one
10
e0132519
2015
概要を表示する
The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium. | | | 26218797
|
Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model. Mondesert, O; Frongia, C; Clayton, O; Boizeau, ML; Lobjois, V; Ducommun, B PloS one
10
e0134411
2015
概要を表示する
Monitoring the DNA-Damage Response (DDR) activated pathway in multicellular tumor spheroid models is an important challenge as these 3D models have demonstrated their major relevance in pharmacological evaluation. Herein we present DDR-Act-FP, a fluorescent biosensor that allows detection of DDR activation through monitoring of the p21 promoter p53-dependent activation. We show that cells expressing the DDR-Act-FP biosensor efficiently report activation of the DDR pathway after DNA damage and its pharmacological manipulation using ATM kinase inhibitors. We also report the successful use of this assay to screen a small compound library in order to identify activators of the DDR response. Finally, using multicellular spheroids expressing the DDR-Act-FP we demonstrate that DDR activation and its pharmacological manipulation with inhibitory and activatory compounds can be efficiently monitored in live 3D spheroid model. This study paves the way for the development of innovative screening and preclinical evaluation assays. | | | 26225756
|
VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin. Malik, BR; Godena, VK; Whitworth, AJ Human molecular genetics
24
6106-17
2015
概要を表示する
Mutations in VPS35 (PARK17) cause autosomal dominant, late onset Parkinson's disease (PD). VPS35 forms a core component of the retromer complex that mediates the retrieval of membrane proteins from endosomes back to either the Golgi or plasma membrane. While aberrant endosomal protein sorting has been linked to several neurodegenerative diseases, the mechanisms by which VPS35 mutations and retromer function contribute to PD pathogenesis are not clear. To address this, we generated transgenic Drosophila that express variant forms of human VPS35 found in PD cases and the corresponding variants of the Drosophila ortholog. We did not find evidence of dominant toxicity from any variant form including the pathogenic D620N mutation, even with aging. However, assessing the ability of Vps35 variants to rescue multiple vps35-mutant phenotypes, we found that the D620N mutation confers a partial loss of function. Recently, VPS35 has been linked to the formation of mitochondria-derived vesicles, which mediate the degradation of mitochondrial proteins and contribute to mitochondrial quality control. This process is also promoted by two other PD-lined genes parkin (PARK2) and PINK1 (PARK6). We demonstrate here that vps35 genetically interacts with parkin but interestingly not with pink1. Strikingly, Vps35 overexpression is able to rescue several parkin-mutant phenotypes. Together these findings provide in vivo evidence that the D620N mutation likely confers pathogenicity through a partial loss of function mechanism and that this may be linked to other known pathogenic mechanisms such as mitochondrial dysfunction. | | | 26251041
|
Increased Infiltration of Extra-Cardiac Cells in Myxomatous Valve Disease. Sauls, K; Toomer, K; Williams, K; Johnson, AJ; Markwald, RR; Hajdu, Z; Norris, RA Journal of cardiovascular development and disease
2
200-213
2015
概要を表示する
Mutations in the actin-binding gene Filamin-A have been linked to non-syndromic myxomatous valvular dystrophy and associated mitral valve prolapse. Previous studies by our group traced the adult valve defects back to developmental errors in valve interstitial cell-mediated extracellular matrix remodeling during fetal valve gestation. Mice deficient in Filamin-A exhibit enlarged mitral leaflets at E17.5, and subsequent progression to a myxomatous phenotype is observed by two months. For this study, we sought to define mechanisms that contribute to myxomatous degeneration in the adult Filamin-A-deficient mouse. In vivo experiments demonstrate increased infiltration of hematopoietic-derived cells and macrophages in adolescent Filamin-A conditional knockout mice. Concurrent with this infiltration of hematopoietic cells, we show an increase in Erk activity, which localizes to regions of MMP2 expression. Additionally, increases in cell proliferation are observed at two months, when hematopoietic cell engraftment and signaling are pronounced. Similar changes are observed in human myxomatous mitral valve tissue, suggesting that infiltration of hematopoietic-derived cells and/or increased Erk signaling may contribute to myxomatous valvular dystrophy. Consequently, immune cell targeting and/or suppression of pErk activities may represent an effective therapeutic option for mitral valve prolapse patients. | | | 26473162
|
STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Popugaeva, E; Pchitskaya, E; Speshilova, A; Alexandrov, S; Zhang, H; Vlasova, O; Bezprozvanny, I Molecular neurodegeneration
10
37
2015
概要を表示する
Alzheimer disease (AD) is a disease of lost memories. Mushroom postsynaptic spines play a key role in memory storage, and loss of mushroom spines has been proposed to be linked to memory loss in AD. Generation of amyloidogenic peptides and accumulation of amyloid plaques is one of the pathological hallmarks of AD. It is important to evaluate effects of amyloid on stability of mushroom spines.In this study we used in vitro and in vivo models of amyloid synaptotoxicity to investigate effects of amyloid peptides on hippocampal mushroom spines. We discovered that application of Aβ42 oligomers to hippocampal cultures or injection of Aβ42 oligomers directly into hippocampal region resulted in reduction of mushroom spines and activity of synaptic calcium-calmodulin-dependent kinase II (CaMKII). We further discovered that expression of STIM2 protein rescued CaMKII activity and protected mushroom spines from amyloid toxicity in vitro and in vivo.Obtained results suggest that downregulation of STIM2-dependent stability of mushroom spines and reduction in activity of synaptic CaMKII is a mechanism of hippocampal synaptic loss in AD model of amyloid synaptotoxicity and that modulators/activators of this pathway may have a potential therapeutic value for treatment of AD. | | | 26275606
|
Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Varela, A; Piperi, C; Sigala, F; Agrogiannis, G; Davos, CH; Andri, MA; Manopoulos, C; Tsangaris, S; Basdra, EK; Papavassiliou, AG Scientific reports
5
13461
2015
概要を表示する
Atherosclerotic plaque formation is associated with irregular distribution of wall shear stress (WSS) that modulates endothelial function and integrity. Polycystins (PC)-1/-2 constitute a flow-sensing protein complex in endothelial cells, able to respond to WSS and induce cell-proliferation changes leading to atherosclerosis. An endothelial cell-culture system of measurable WSS was established to detect alterations in PCs expression under conditions of low- and high-oscillatory shear stress in vitro. PCs expression and p53 activation as a regulator of cell proliferation were further evaluated in vivo and in 69 advanced human carotid atherosclerotic plaques (AAPs). Increased PC-1/PC-2 expression was observed at 30-60 min of low shear stress (LSS) in endothelial cells. Elevated PC-1 expression at LSS was followed by p53 potentiation. PCs immunoreactivity localizes in areas with macrophage infiltration and neovascularization. PC-1 mRNA and protein levels were significantly higher than PC-2 in stable fibroatherotic (V) and unstable/complicated (VI) AAPs. Elevated PC-1 immunostaining was detected in AAPs from patients with diabetes mellitus, dyslipidemia, hypertension and carotid stenosis, at both arteries (50%) or in one artery (90%). PCs seem to participate in plaque formation and progression. Since PC-1 upregulation coincides with p38 and p53 activation, a potential interplay of these molecules in atherosclerosis induction is posed. | | | 26286632
|
Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death. Choudhury, S; Liu, Y; Clark, AF; Pang, IH Molecular neurodegeneration
10
40
2015
概要を表示する
Axonal injury of the optic nerve (ON) is involved in various ocular diseases, such as glaucoma and traumatic optic neuropathy, which leads to apoptotic death of retinal ganglion cells (RGCs) and loss of vision. Caspases have been implicated in RGC pathogenesis. However, the role of caspase-7, a functionally unique caspase, in ON injury and RGC apoptosis has not been reported previously. The purpose of this study is to evaluate the role of caspase-7 in ON injury-induced RGC apoptosis.C57BL/6 (wildtype, WT) and caspase-7 knockout (Casp7(-/-)) mice were used. We show that ON crush activated caspase-7 and calpain-1, an upstream activator of caspase-7, in mouse RGCs, as well as hydrolysis of kinectin and co-chaperone P23, specific substrates of caspase-7. ON crush caused a progressive loss of RGCs to 28 days after injury. Knockout of caspase-7 partially and significantly protected against the ON injury-induced RGC loss; RGC density at 28 days post ON crush in Casp7(-/-) mice was approximately twice of that in WT ON injured retinas. Consistent with changes in RGC counts, spectral-domain optical coherence tomography analysis revealed that ON crush significantly reduced the in vivo thickness of the ganglion cell complex layer (including ganglion cell layer, nerve fiber layer, and inner plexiform layer) in the retina. The ON crush-induced thinning of retinal layer was significantly ameliorated in Casp7(-/-) mice when compared to WT mice. Moreover, electroretinography analysis demonstrated a decline in the positive component of scotopic threshold response amplitude in ON crushed eyes of the WT mice, whereas this RGC functional response was significantly higher in Casp7(-/-) mice at 28 days post injury.Altogether, our findings indicate that caspase-7 plays a critical role in ON injury-induced RGC death, and inhibition of caspase-7 activity may be a novel therapeutic strategy for glaucoma and other neurodegenerative diseases of the retina. | | | 26306916
|
Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Morgner, J; Ghatak, S; Jakobi, T; Dieterich, C; Aumailley, M; Wickström, SA Nature communications
6
8198
2015
概要を表示する
Stem cells reside in specialized niches that are critical for their function. Quiescent hair follicle stem cells (HFSCs) are confined within the bulge niche, but how the molecular composition of the niche regulates stem cell behaviour is poorly understood. Here we show that integrin-linked kinase (ILK) is a key regulator of the bulge extracellular matrix microenvironment, thereby governing the activation and maintenance of HFSCs. ILK mediates deposition of inverse laminin (LN)-332 and LN-511 gradients within the basement membrane (BM) wrapping the hair follicles. The precise BM composition tunes activities of Wnt and transforming growth factor-β pathways and subsequently regulates HFSC activation. Notably, reconstituting an optimal LN microenvironment restores the altered signalling in ILK-deficient cells. Aberrant stem cell activation in ILK-deficient epidermis leads to increased replicative stress, predisposing the tissue to carcinogenesis. Overall, our findings uncover a critical role for the BM niche in regulating stem cell activation and thereby skin homeostasis. | | | 26349061
|