Herpesvirus papio encodes a functional homologue of the Epstein-Barr virus apoptosis suppressor, BHRF1. Meseda, C A, et al. J. Gen. Virol., 81: 1801-5 (2000)
2000
Show Abstract
The human tumour virus Epstein-Barr virus (EBV) encodes a 17 kDa protein, BHRF1, which is a member of the BCL:-2 family and has been shown to suppress apoptosis. The role of this gene in the life-cycle of EBV has not been fully elucidated. In order to identify motifs conserved in herpesviruses and possibly shed light on its function we isolated a BHRF1 homologue from herpesvirus papio (cercopithecine herpesvirus-12) a closely related gammaherpesvirus of baboons. The gene, hvpBHRF1, also encodes a 17 kDa protein which shares 64% identity and 79% similarity with EBV BHRF1 at the amino acid level. In biological assays, hvpBHRF1 and BHRF1 conferred similar levels of protection on human keratinocytes induced to apoptose with cis-platin. | 10859386
|
Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt's lymphoma cell line Akata. J Komano, M Sugiura, K Takada Journal of virology
72
9150-6
1998
Show Abstract
In the present study, we established an in vitro system representing the Burkitt's lymphoma (BL)-type Epstein-Barr virus (EBV) infection which is characterized by expression of EBV-determined nuclear antigen 1 (EBNA-1) and absence of EBNA-2 and latent membrane protein 1 (LMP1) expression. EBV-negative cell clones isolated from the EBV-positive BL line Akata were infected with an EBV recombinant carrying a selectable marker, and the following selection culture easily yielded EBV-infected clones. EBV-reinfected clones showed BL-type EBV expression and restored the capacity for growth on soft agar and tumorigenicity in SCID mice that were originally retained in parental EBV-positive Akata cells and lost in EBV-negative subclones. Moreover, it was found that EBV-positive cells were more resistant to apoptosis than were EBV-negative cells. EBV-infected cells expressed the bcl-2 protein, through which cells might become resistant to apoptosis, at a higher level than did uninfected cells. This is the first report that BL-type EBV infection confers apoptosis resistance even in the absence of expression of LMP1 and BHRF1, both of which are known to have an antiapoptotic function. Surprisingly, transfection of the EBNA-1 gene into EBV-negative Akata clones could not restore malignant phenotypes and apoptosis resistance, thus suggesting that EBNA-1 alone was not sufficient for conferring them. Our results suggest that the persistence of EBV in BL cells is required for the cells to be more malignant and apoptosis resistant, which underlines the oncogenic role of EBV in BL genesis. Full Text Article | 9765461
|