Cyclin A degradation by primate cytomegalovirus protein pUL21a counters its innate restriction of virus replication. Caffarelli, N; Fehr, AR; Yu, D PLoS pathogens
9
e1003825
2013
Show Abstract
Cyclin A is critical for cellular DNA synthesis and S phase progression of the cell cycle. Human cytomegalovirus (HCMV) can reduce cyclin A levels and block cellular DNA synthesis, and cyclin A overexpression can repress HCMV replication. This interaction has only been previously observed in HCMV as murine CMV does not downregulate cyclin A, and the responsible viral factor has not been identified. We previously reported that the HCMV protein pUL21a disrupted the anaphase-promoting complex (APC), but a point mutant abrogating this activity did not phenocopy a UL21a-deficient virus, suggesting that pUL21a has an additional function. Here we identified a conserved arginine-x-leucine (RxL) cyclin-binding domain within pUL21a, which allowed pUL21a to interact with cyclin A and target it for proteasome degradation. Homologous pUL21a proteins from both chimpanzee and rhesus CMVs also contained the RxL domain and similarly degraded cyclin A, indicating that this function is conserved in primate CMVs. The RxL point mutation disabled the virus' ability to block cellular DNA synthesis and resulted in a growth defect similar to pUL21a-deficient virus. Importantly, knockdown of cyclin A rescued growth of UL21a-deficient virus. Together, these data show that during evolution, the pUL21a family proteins of primate CMVs have acquired a cyclin-binding domain that targets cyclin A for degradation, thus neutralizing its restriction on virus replication. Finally, the combined proteasome-dependent degradation of pUL21a and its cellular targets suggests that pUL21a may act as a novel suicide protein, targeting its protein cargos for destruction. | 24385906
|
Proteasome-dependent disruption of the E3 ubiquitin ligase anaphase-promoting complex by HCMV protein pUL21a. Fehr, AR; Gualberto, NC; Savaryn, JP; Terhune, SS; Yu, D PLoS pathogens
8
e1002789
2012
Show Abstract
The anaphase-promoting complex (APC) is an E3 ubiquitin ligase which controls ubiquitination and degradation of multiple cell cycle regulatory proteins. During infection, human cytomegalovirus (HCMV), a widespread pathogen, not only phosphorylates the APC coactivator Cdh1 via the multifunctional viral kinase pUL97, it also promotes degradation of APC subunits via an unknown mechanism. Using a proteomics approach, we found that a recently identified HCMV protein, pUL21a, interacted with the APC. Importantly, we determined that expression of pUL21a was necessary and sufficient for proteasome-dependent degradation of APC subunits APC4 and APC5. This resulted in APC disruption and required pUL21a binding to the APC. We have identified the proline-arginine amino acid pair at residues 109-110 in pUL21a to be critical for its ability to bind and regulate the APC. A point mutant virus in which proline-arginine were mutated to alanines (PR-AA) grew at wild-type levels. However, a double mutant virus in which the viral ability to regulate the APC was abrogated by both PR-AA point mutation and UL97 deletion was markedly more attenuated compared to the UL97 deletion virus alone. This suggests that these mutations are synthetically lethal, and that HCMV exploits two viral factors to ensure successful disruption of the APC to overcome its restriction on virus infection. This study reveals the HCMV protein pUL21a as a novel APC regulator and uncovers a unique viral mechanism to subvert APC activity. | 22792066
|
Human cytomegalovirus early protein pUL21a promotes efficient viral DNA synthesis and the late accumulation of immediate-early transcripts. Fehr, AR; Yu, D Journal of virology
85
663-74
2011
Show Abstract
We have previously reported that a newly annotated gene of human cytomegalovirus (HCMV), UL21a, encodes an early viral protein termed pUL21a. Most notably, the virions of a UL21a deletion virus had markedly reduced infectivity, indicating that UL21a is required to establish an efficient productive infection. In this study, we infected fibroblasts with equal numbers of DNA-containing viral particles and identified where in the viral life cycle pUL21a acted. The UL21a deletion virus entered cells and initiated viral gene expression efficiently; however, it synthesized viral DNA poorly and accumulated several immediate-early (IE) transcripts at reduced levels at late times of infection. The defect in viral DNA synthesis preceded that in gene expression, and inhibition of viral DNA synthesis reduced the late accumulation of IE transcripts in both wild-type and mutant virus-infected cells to equivalent levels. This suggests that reduced viral DNA synthesis is the cause of reduced IE gene expression in the absence of UL21a. The growth of UL21a deletion virus was similar to that of recombinant HCMV in which pUL21a expression was abrogated by stop codon mutations, and the defect was rescued in pUL21a-expressing fibroblasts. pUL21a expression in trans was sufficient to restore viral DNA synthesis and gene expression of mutant virus produced from normal fibroblasts, whereas mutant virus produced from complementing cells still exhibited the defect in normal fibroblasts. Thus, pUL21a does not promote the functionality of HCMV virions; rather, its de novo synthesis facilitates viral DNA synthesis, which is necessary for the late accumulation of IE transcripts and establishment of a productive infection. | 21047969
|
The human cytomegalovirus gene UL79 is required for the accumulation of late viral transcripts. Perng, YC; Qian, Z; Fehr, AR; Xuan, B; Yu, D Journal of virology
85
4841-52
2011
Show Abstract
In this study, we adopted a conditional protein genetic approach to characterize the role of the human cytomegalovirus (HCMV) gene UL79 during virus infection. We constructed ADddUL79, a recombinant HCMV in which the annotated UL79 open reading frame (ORF) was tagged with the destabilization domain of a highly unstable variant of the human FKBP12 protein (ddFKBP). The ddFKBP domain targets the tagged protein for rapid proteasomal degradation, but the synthetic ligand Shield-1 can stabilize ddFKBP, allowing accumulation of the tagged protein. ADddUL79 failed to replicate without Shield-1, but it grew at wild-type levels with Shield-1 or in human foreskin fibroblasts overexpressing hemagglutinin (HA)-tagged UL79 (HF-UL79HA cells), indicating an essential role of UL79 and the effectiveness of this approach. Without Shield-1, representative immediate-early and early viral proteins as well as viral DNA accumulated normally, but late transcripts and proteins were markedly reduced. UL79 was transcribed with early-late kinetics, which was also regulated via a positive-feedback loop. Using HF-UL79HA cells, we found that the UL79 protein localized to viral replication compartments during HCMV infection. Finally, we created a second UL79 mutant virus (ADinUL79(stop)) in which the UL79 ORF was disrupted by a stop codon mutation and found that ADinUL79(stop) phenocopied ADddUL79 under the destabilizing condition. Taking these results together, we conclude that UL79 acts after viral DNA replication to promote the accumulation of late viral transcripts. Importantly, the comparative analysis of ADddUL79 and ADinUL79(stop) viruses provide additional proof for the power of the protein stability-based conditional approach to dissect the role of viral factors in HCMV biology. | 21367901
|
Internal deletions of IE2 86 and loss of the late IE2 60 and IE2 40 proteins encoded by human cytomegalovirus affect the levels of UL84 protein but not the amount of UL84 mRNA or the loading and distribution of the mRNA on polysomes. Sanders, Rebecca L, et al. J. Virol., 82: 11383-97 (2008)
2008
Show Abstract
The major immediate-early (IE) region of human cytomegalovirus encodes two IE proteins, IE1 72 and IE2 86, that are translated from alternatively spliced transcripts that differ in their 3' ends. Two other proteins that correspond to the C-terminal region of IE2 86, IE2 60 and IE2 40, are expressed at late times. In this study, we used IE2 mutant viruses to examine the mechanism by which IE2 86, IE2 60, and IE2 40 affect the expression of a viral DNA replication factor, UL84. Deletion of amino acids (aa) 136 to 290 of IE2 86 results in a significant decrease in UL84 protein during the infection. This loss of UL84 is both proteasome and calpain independent, and the stability of the protein in the context of infection with the mutant remains unaffected. The RNA for UL84 is expressed to normal levels in the mutant virus-infected cells, as are the RNAs for two other proteins encoded by this region, UL85 and UL86. Moreover, nuclear-to-cytoplasmic transport and the distribution of the UL84 mRNA on polysomes are unaffected. A region between aa 290 and 369 of IE2 86 contributes to the UL84-IE2 86 interaction in vivo and in vitro. IE2 86, IE2 60, and IE2 40 are each able to interact with UL84 in the mutant-infected cells, suggesting that these interactions may be important for the roles of UL84 and the IE2 proteins. Thus, these data have defined the contribution of IE2 86, IE2 60, and IE2 40 to the efficient expression of UL84 throughout the infection. | 18787008
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. Sanders, RL; Clark, CL; Morello, CS; Spector, DH Journal of virology
82
7059-77
2008
Show Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins. | 18463148
|
The IE2 60-kilodalton and 40-kilodalton proteins are dispensable for human cytomegalovirus replication but are required for efficient delayed early and late gene expression and production of infectious virus. White, Elizabeth A, et al. J. Virol., 81: 2573-83 (2007)
2007
Show Abstract
The human cytomegalovirus (HCMV) IE2 86-kDa protein is an essential transactivator of viral and cellular gene expression. Additional proteins of 60 and 40 kDa are expressed from the IE2 gene at late times postinfection and are identical to the C terminus of IE2 86. We have constructed HCMV recombinants that express wild-type full-length IE2 86 but do not express the IE2 40- and 60-kDa proteins. Each of these recombinants is viable, indicating that neither the 60-kDa nor the 40-kDa protein is required for virus replication, either alone or in combination. Cells infected with the IE2 60 and IE2 40 deletion mutants, however, exhibit decreased expression of selected viral genes at late times. In particular, expression of the viral DNA replication factor UL84 is affected by the deletion of IE2 40, and expression of the tegument protein pp65 (ppUL83) is affected by the deletion of both IE2 40 and IE2 60. IE2 60 and IE2 40 are also required for the production of normal levels of infectious virus. Finally, IE2 40 appears to function as a repressor of major immediate-early transcription in the infected cell. These results begin to define functions for the IE2 60- and IE2 40-kDa proteins and indicate that these products contribute both to the expression of selected viral genes and to the overall progression of the infection. | 17202222
|