Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body - Implications for physiological functions. Blosa, M, et al. Neuroscience, 228: 215-34 (2013)
2013
Show Abstract
The medial nucleus of the trapezoid body (MNTB) is a vital structure of sound localization circuits in the auditory brainstem. Each principal cell of MNTB is contacted by a very large presynaptic glutamatergic terminal, the calyx of Held. The MNTB principal cells themselves are surrounded by extracellular matrix components forming prominent perineuronal nets (PNs). Throughout the CNS, PNs, which form lattice-like structures around the somata and proximal dendrites, are associated with distinct types of neurons. PNs are highly enriched in hyaluronan and chondroitin sulfate proteoglycans therefore providing a charged surface structure surrounding the cell body and proximal neurites of these neurons. The localization and composition of PNs have lead investigators to a number of hypotheses about their functions including: creating a specific extracellular ionic milieu around these neurons, stabilizing synapses, and influencing the outgrowth of axons. However, presently the precise functions of PNs are still quite unclear primarily due to the lack of an ideal experimental model system that is highly enriched in PNs and in which the synaptic transmission properties can be precisely measured. The MNTB principal cells could offer such a model, since they have been extensively characterized electrophysiologically. However, extracellular matrix (ECM) in these neurons has not yet been precisely detailed. The present study gives a detailed examination of the ECM organization and structural differences in PNs of the mouse MNTB. The different PN components and their distribution pattern are scrutinized throughout the MNTB. The data are complemented by electron microscopic investigations of the unique ultrastructural localization of PN-components and their interrelation with distinct pre- and postsynaptic MNTB cell structures. Therefore, we believe this work identifies the MNTB as an ideal system for studying PN function. | 23069754
|
Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Andrews, EM; Richards, RJ; Yin, FQ; Viapiano, MS; Jakeman, LB Experimental neurology
235
174-87
2012
Show Abstract
Chondroitin sulfate proteoglycans (CSPGs) present an inhibitory barrier to axonal growth and plasticity after trauma to the central nervous system. These extracellular and membrane bound molecules are altered after spinal cord injuries, but the magnitude, time course, and patterns of expression following contusion injury have not been fully described. Western blots and immunohistochemistry were combined to assess the expression of four classically inhibitory CSPGs, aggrecan, neurocan, brevican and NG2, at the lesion site and in distal segments of cervical and thoracic spinal cord at 3, 7, 14 and 28 days following a severe mid-thoracic spinal contusion. Total neurocan and the full-length (250 kDa) isoform were strongly upregulated both at the lesion epicenter and in cervical and lumbar segments. In contrast, aggrecan and brevican were sharply reduced at the injury site and were unchanged in distal segments. Total NG2 protein was unchanged across the injury site, while NG2+ profiles were distributed throughout the lesion site by 14 days post-injury (dpi). Far from the lesion, NG2 expression was increased at lumbar, but not cervical spinal cord levels. To determine if the robust increase in neurocan at the distal spinal cord levels corresponded to regions of increased astrogliosis, neurocan and GFAP immunoreactivity were measured in gray and white matter regions of the spinal enlargements. GFAP antibodies revealed a transient increase in reactive astrocyte staining in cervical and lumbar cord, peaking at 14 dpi. In contrast, neurocan immunoreactivity was specifically elevated in the cervical dorsal columns and in the lumbar ventral horn and remained high through 28 dpi. The long lasting increase of neurocan in gray matter regions at distal levels of the spinal cord may contribute to the restriction of plasticity in the chronic phase after SCI. Thus, therapies targeted at altering this CSPG both at and far from the lesion site may represent a reasonable addition to combined strategies to improve recovery after SCI. | 21952042
|
Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. Orlando, C; Ster, J; Gerber, U; Fawcett, JW; Raineteau, O The Journal of neuroscience : the official journal of the Society for Neuroscience
32
18009-17, 18017a
2012
Show Abstract
During early postnatal development of the CNS, neuronal networks are configured through the formation, elimination, and remodeling of dendritic spines, the sites of most excitatory synaptic connections. The closure of this critical period for plasticity correlates with the maturation of the extracellular matrix (ECM) and results in reduced dendritic spine dynamics. Chondroitin sulfate proteoglycans (CSPGs) are thought to be the active components of the mature ECM that inhibit functional plasticity in the adult CNS. These molecules are diffusely expressed in the extracellular space or aggregated as perineuronal nets around specific classes of neurons. We used organotypic hippocampal slices prepared from 6-d-old Thy1-YFP mice and maintained in culture for 4 weeks to allow ECM maturation. We performed live imaging of CA1 pyramidal cells to assess the effect of chondroitinase ABC (ChABC)-mediated digestion of CSPGs on dendritic spine dynamics. We found that CSPG digestion enhanced the motility of dendritic spines and induced the appearance of spine head protrusions in a glutamate receptor-independent manner. These changes were paralleled by the activation of β1-integrins and phosphorylation of focal adhesion kinase at synaptic sites, and were prevented by preincubation with a β1-integrin blocking antibody. Interestingly, microinjection of ChABC close to dendritic segments was sufficient to induce spine remodeling, demonstrating that CSPGs located around dendritic spines modulate their dynamics independently of perineuronal nets. This restrictive action of perisynaptic CSPGs in mature neural tissue may account for the therapeutic effects of ChABC in promoting functional recovery in impaired neural circuits. | 23238717
|
Effect of hydrocephalus on rat brain extracellular compartment. Del Bigio, MR; Enno, TL Cerebrospinal fluid research
5
12
2008
Show Abstract
The cerebral cortex may be compressed in hydrocephalus and some experiments suggest that movement of extracellular substances through the cortex is impaired. We hypothesized that the extracellular compartment is reduced in size and that the composition of the extracellular compartment changes in rat brains with kaolin-induced hydrocephalus.We studied neonatal (newborn) onset hydrocephalus for 1 or 3 weeks, juvenile (3 weeks) onset hydrocephalus for 3-4 weeks or 9 months, and young adult (10 weeks) onset hydrocephalus for 2 weeks, after kaolin injection. Freeze substitution electron microscopy was used to measure the size of the extracellular compartment. Western blotting and immunohistochemistry with quantitative image densitometry was used to study the extracellular matrix constituents, phosphacan, neurocan, NG2, decorin, biglycan, and laminin.The extracellular space in cortical layer 1 was reduced significantly from 16.5 to 9.6% in adult rats with 2 weeks duration hydrocephalus. Western blot and immunohistochemistry showed that neurocan increased only in the periventricular white matter following neonatal induction and 3 weeks duration hydrocephalus. The same rats showed mild decorin increases in white matter and around cortical neurons. Juvenile and adult onset hydrocephalus was associated with no significant changes.We conclude that compositional changes in the extracellular compartment are negligible in cerebral cortex of hydrocephalic rats at various ages. Therefore, the functional change related to extracellular fluid flow should be reversible. Full Text Article | 18616813
|
Defining the dopamine transporter proteome by convergent biochemical and in silico analyses. R Maiya, I Ponomarev, K D Linse, R A Harris, R D Mayfield Genes, brain, and behavior
6
97-106
2007
Show Abstract
Monoamine transporters play a key role in neuronal signaling by mediating reuptake of neurotransmitters from the synapse. The function of the dopamine transporter (DAT), an important member of this family of transporters, is regulated by multiple signaling mechanisms, which result in altered cell surface trafficking of DAT. Protein-protein interactions are likely critical for this mode of transporter regulation. In this study, we identified proteins associated with DAT by immunoprecipitation (IP) followed by mass spectrometry. We identified 20 proteins with diverse cellular functions that can be classified as trafficking proteins, cytoskeletal proteins, ion channels and extracellular matrix-associated proteins. DAT was found to associate with the voltage-gated potassium channel Kv2.1 and synapsin Ib, a protein involved in regulating neurotransmitter release. An in silico analysis provided evidence for common transcriptional regulation of the DAT proteome genes. In summary, this study identified a network of proteins that are primary candidates for functional regulation of the DAT, an important player in mechanisms of mental disorders and drug addiction. | 16643512
|
Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment. Jennifer F Iaci,Andrea M Vecchione,Michael P Zimber,Anthony O Caggiano Journal of neurotrauma
24
2007
Show Abstract
Chondroitinase treatment of experimental spinal cord injury improves recovery of sensory, motor, and autonomic functions. Chondroitinase catalyzes the cleavage of glycosaminoglycans (GAGs) from the core proteins of chondroitin sulfate proteoglycans (CSPGs). Little is known about changes in production of these proteoglycans in the clinically relevant contusion model of spinal cord injury or if CSPG content is altered by chondroitinase treatment. Female Long-Evans rats were injured with a forceps contusion injury and treated on alternate days with chondroitinase ABCI or control enzyme via an intrathecal catheter. Spinal cords were analyzed at specific times after injury. The cord was divided in 4 mm long segments, one containing the lesion, two rostral and two caudal to the lesion. These segments were assessed for CSPG protein and message content (NG2, neurocan and phosphacan) by Western blotting and real-time PCR. CSPG protein content was increased by one day post injury for all CSPGs investigated, and was increased in all segments examined rostral and caudal to the lesion site. Significant increases in CSPG were observed with peak content detected at 7, 7 and 14 days post injury for NG2, neurocan and phosphacan, respectively. Chondroitinase treatment had little impact upon the CPSG protein content. Changes in message levels of these CSPGs are also reported. This demonstrates that expression patterns of CSPGs in contusion injury are similar to those surrounding surgical hemisection lesions and demonstrates that the sensory and motor function enhancing effects of chondroitinase are likely due to removal of GAG chains rather than reduction in CSPG content. | 18001203
|
Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. Laabs, TL; Wang, H; Katagiri, Y; McCann, T; Fawcett, JW; Geller, HM The Journal of neuroscience : the official journal of the Society for Neuroscience
27
14494-501
2007
Show Abstract
Chondroitin sulfate proteoglycans (CSPGs) are upregulated in the CNS after injury and participate in the inhibition of axon regeneration mainly through their glycosaminoglycan (GAG) side chains. In the present study, we have identified a new way to alleviate the inhibition of axonal regeneration by CSPG GAGs. We have successfully decreased the amount of CSPG GAG produced by astrocytes by targeting chondroitin polymerizing factor (ChPF), a key enzyme in the CSPG biosynthetic pathway. Using short interfering RNA (siRNA), we reduced ChPF mRNA levels by 70% in both the Neu7 astrocyte cell line and primary rat astrocytes. This reduction leads to a decrease in ChPF protein levels and a reduced amount of CSPG GAG chains in the conditioned media (CM) of these cells. Secretion of neurocan by primary astrocytes and NG2 core protein by Neu7 cells transfected with ChPF siRNA is not decreased, suggesting that inhibiting GAG chain synthesis does not affect core protein trafficking from these cells. CM from siRNA-treated Neu7 cells is a less repulsive substrate for axons than CM from control cells. In addition, axonal outgrowth from cerebellar granule neurons is increased on or in CM from ChPF siRNA-treated Neu7 cells. These data indicate that targeting the biosynthesis of CSPG GAG is a potentially new therapeutic avenue for decreasing CSPG GAG produced by astrocytes after CNS injury. | 18160657
|