Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription. Becherel, OJ; Gueven, N; Birrell, GW; Schreiber, V; Suraweera, A; Jakob, B; Taucher-Scholz, G; Lavin, MF Human molecular genetics
15
2239-49
2006
Show Abstract
The APTX gene, mutated in patients with the neurological disorder ataxia with oculomotor apraxia type 1 (AOA1), encodes a novel protein aprataxin. We describe here, the interaction and interdependence between aprataxin and several nucleolar proteins, including nucleolin, nucleophosmin and upstream binding factor-1 (UBF-1), involved in ribosomal RNA (rRNA) synthesis and cellular stress signalling. Interaction between aprataxin and nucleolin occurred through their respective N-terminal regions. In AOA1 cells lacking aprataxin, the stability of nucleolin was significantly reduced. On the other hand, down-regulation of nucleolin by RNA interference did not affect aprataxin protein levels but abolished its nucleolar localization suggesting that the interaction with nucleolin is involved in its nucleolar targeting. GFP-aprataxin fusion protein co-localized with nucleolin, nucleophosmin and UBF-1 in nucleoli and inhibition of ribosomal DNA transcription altered the distribution of aprataxin in the nucleolus, suggesting that the nature of the nucleolar localization of aprataxin is also dependent on ongoing rRNA synthesis. In vivo rRNA synthesis analysis showed only a minor decrease in AOA1 cells when compared with controls cells. These results demonstrate a cross-dependence between aprataxin and nucleolin in the nucleolus and while aprataxin does not appear to be directly involved in rRNA synthesis its nucleolar localization is dependent on this synthesis. | 16777843
 |
Aprataxin forms a discrete branch in the HIT (histidine triad) superfamily of proteins with both DNA/RNA binding and nucleotide hydrolase activities. Kijas, AW; Harris, JL; Harris, JM; Lavin, MF The Journal of biological chemistry
281
13939-48
2006
Show Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset autosomal recessive spinocerebellar ataxia with a defect in the protein Aprataxin, implicated in the response of cells to DNA damage. We describe here the expression of a recombinant form of Aprataxin and show that it has dual DNA binding and nucleotide hydrolase activities. This protein binds to double-stranded DNA with high affinity but is also capable of binding double-stranded RNA and single-strand DNA, with increased affinity for hairpin structures. No increased binding was observed with a variety of DNA structures mimicking intermediates in DNA repair. The DNA binding observed here was not dependent on zinc, and the addition of exogenous zinc abolished DNA binding. We also demonstrate that Aprataxin hydrolyzes with similar efficiency the model histidine triad nucleotide-binding protein substrate, AMPNH2, and the Fragile histidine triad protein substrate, Ap4A. These activities were significantly reduced in the presence of duplex DNA and to a lesser extent in the presence of single-strand DNA, and removal of the N-terminal Forkhead associated domain did not alter activity. Finally, comparison of sequence relationships between the histidine triad superfamily members shows that Aprataxin forms a distinct branch in this superfamily. In addition to its capacity for nucleotide binding and hydrolysis, the observation that it also binds DNA and RNA adds a new dimension to this superfamily of proteins and provides further support for a role for Aprataxin in the cellular response to DNA damage. | 16547001
 |