Receptor-interacting protein kinases modulate noise-induced sensory hair cell death. Zheng, HW; Chen, J; Sha, SH Cell death & disease
5
e1262
2014
Show Abstract
Receptor-interacting protein (RIP) kinases promote the induction of necrotic cell death pathways. Here we investigated signaling pathways in outer hair cells (OHCs) of adult male CBA/J mice exposed to noise that causes permanent threshold shifts, with a particular focus on RIP kinase-regulated necroptosis. One hour after noise exposure, nuclei of OHCs in the basal region of the cochlea displayed both apoptotic and necrotic features. RIP1 and RIP3 protein levels increased and caspase-8 was activated. Treatment with pan-caspase inhibitor ZVAD blocked the activation of caspase-8 and reduced the number of apoptotic nuclei, while increasing levels of RIP1, RIP3, and necrotic OHCs. Conversely, treatment with necrosis inhibitor necrostatin-1 (Nec-1) or RIP3 siRNA (siRIP3) diminished noise-induced increases in RIP1 and RIP3, and decreased necrotic OHC nuclei. This treatment also increased the number of apoptotic nuclei without increasing activation of caspase-8. Consistent with the elevation of levels of RIP1 and RIP3, noise-induced active AMPKα levels increased with ZVAD treatment, but decreased with Nec-1 and siRIP3 treatment. Furthermore, treatment with siRIP3 did not alter the activation of caspase-8, but instead increased activation of caspase-9 and promoted endonuclease G translocation into OHC nuclei. Finally, auditory brainstem response functional measurements and morphological assessment of OHCs showed that ZVAD treatment reduces noise-induced deficits. This protective function is potentiated when combined with siRIP3 treatment. In conclusion, noise-induced OHC apoptosis and necrosis are modulated by caspases and RIP kinases, respectively. Inhibition of either pathway shifts the prevalence of OHC death to the alternative pathway. | Western Blotting | | 24874734
|
Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. Chen, FQ; Zheng, HW; Hill, K; Sha, SH The Journal of neuroscience : the official journal of the Society for Neuroscience
32
12421-30
2012
Show Abstract
Small GTPases mediate transmembrane signaling and regulate the actin cytoskeleton in eukaryotic cells. Here, we characterize the auditory pathology of adult male CBA/J mice exposed to traumatic noise (2-20 kHz; 106 dB; 2 h). Loss of outer hair cells was evident 1 h after noise exposure in the basal region of the cochlea and spread apically with time, leading to permanent threshold shifts of 35, 60, and 65 dB at 8, 16, and 32 kHz. Several biochemical and molecular changes correlated temporally with the loss of cells. Immediately after exposure, the concentration of ATP decreased in cochlear tissue and reached a minimum after 1 h while the immunofluorescent signal for p-AMPKα significantly increased in sensory hair cells at that time. Levels of active Rac1 increased, whereas those of active RhoA decreased significantly 1 h after noise attaining a plateau at 1-3 h; the formation of a RhoA-p140mDia complex was consistent with an activation of Rho GTPase pathways. Also at 1-3 h after exposure, the caspase-independent cell death marker, Endo G, translocated to the nuclei of outer hair cells. Finally, experiments with the inner ear HEI-OC1 cell line demonstrated that the energy-depleting agent oligomycin enhanced both Rac1 activity and cell death. The sum of the results suggests that traumatic noise induces transient cellular ATP depletion and activates Rho GTPase pathways, leading to death of outer hair cells in the cochlea. | | | 22956833
|
Triggering apoptotic death of human malignant melanoma a375.s2 cells by bufalin: involvement of caspase cascade-dependent and independent mitochondrial signaling pathways. Hsiao, YP; Yu, CS; Yu, CC; Yang, JS; Chiang, JH; Lu, CC; Huang, HY; Tang, NY; Yang, JH; Huang, AC; Chung, JG Evidence-based complementary and alternative medicine : eCAM
2012
591241
2012
Show Abstract
Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨ(m) and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways. | | | 22719785
|
Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death. Chen, PY; Lin, KC; Lin, JP; Tang, NY; Yang, JS; Lu, KW; Chung, JG Evidence-based complementary and alternative medicine : eCAM
2012
718320
2012
Show Abstract
Phenethyl isothiocyanate (PEITC), an effective anticancer and chemopreventive agent, has been reported to inhibit cancer cell growth through cell-cycle arrest and induction of apoptotic events in various human cancer cells models. However, whether PEITC inhibits human oral squamous cell carcinoma HSC-3 cell growth and its underlying mechanisms is still not well elucidated. In the present study, we evaluated the inhibitory effects of PEITC in HSC-3 cells and examined PEITC-modulated cell-cycle arrest and apoptosis. The contrast-phase and flow cytometric assays were used for examining cell morphological changes and viability, respectively. The changes of cell-cycle and apoptosis-associated protein levels were determined utilizing Western blotting in HSC-3 cells after exposure to PEITC. Our results indicated that PEITC effectively inhibited the HSC-3 cells' growth and caused apoptosis. PEITC induced G(0)/G(1) phase arrest through the effects of associated protein such as p53, p21, p17, CDK2 and cyclin E, and it triggered apoptosis through promotion of Bax and Bid expression and reduction of Bcl-2, leading to decrease the levels of mitochondrial membrane potential (ΔΨ(m)), and followed the releases of cytochrome c, AIF and Endo G then for causing apoptosis in HSC-3 cells. These results suggest that PEITC could be an antitumor compound for oral cancer therapy. | Western Blotting | | 22919418
|
Nuclear translocation of endonuclease G in degenerating neurons after permanent middle cerebral artery occlusion in mice. Marianne Nielsen, K L Lambertsen, B H Clausen, M Meldgaard, N H Diemer, J Zimmer, B Finsen, Marianne Nielsen, K L Lambertsen, B H Clausen, M Meldgaard, N H Diemer, J Zimmer, B Finsen Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
194
17-27
2009
Show Abstract
Endonuclease G (EndoG) is a mitochondrial enzyme, known to be involved in caspase-independent cell death following translocation to the cellular nucleus. Nuclear translocation of EndoG has been observed in the ischemic area following transient occlusion of the middle cerebral artery (MCA) in mice, but not after permanent MCA occlusion. In this study we investigated the cellular and temporal expression of EndoG in infarcted cortex during the first 24 h after permanent MCA occlusion in mice, using immunohistochemistry, quantitative rt-PCR and cell specific immunoflourescence markers. EndoG translocated from the cytoplasm to the nucleus as early as 4 h and with a significant increase in the number of EndoG positive nuclei at 12 and 24 h after MCA occlusion. Nuclear translocation of EndoG was observed in degenerating NeuN positive neurons that were evenly distributed throughout the developing infarct. Translocation of EndoG was supported by unaltered EndoG mRNA levels. EndoG was neither expressed in GFAP positive astrocytes nor in CD11b positive microglia/macrophages. In contrast, CD11b positive microglia, but not infiltrating CD11b positive bone marrow-derived macrophages, were shown to express activated caspase-3. The translocation of EndoG to the nucleus of neurons in the infarct implicates EndoG in ischemic neuronal degeneration after permanent MCA occlusion in mice. Increased knowledge about EndoG involvement in ischemic neuronal cell death in mice might offer a promise to control processes involved in neuronal cell death pathways in stroke. | | | 19139873
|
Caspase-independent pathways of hair cell death induced by kanamycin in vivo Jiang, H, et al Cell Death Differ, 13:20-30 (2006)
2006
| Immunohistochemistry (Tissue) | Mouse | 16021180
|
Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. Takano, J; Tomioka, M; Tsubuki, S; Higuchi, M; Iwata, N; Itohara, S; Maki, M; Saido, TC The Journal of biological chemistry
280
16175-84
2005
Show Abstract
Calpain has been implicated in excitotoxic neurode-generation, but its mechanism of action particularly in adult brains remains unclear. We generated mutant mice lacking or overexpressing calpastatin, the only solely calpain-specific inhibitor ever identified or synthesized. Modulation of calpastatin expression caused no defect in the mice under normal conditions, indicating that calpastatin functions as a negative regulator of calpain only under pathological conditions. Kainate-evoked excitotoxicity in hippocampus resulted in proteolytic activation of a proapoptotic Bcl-2 subfamily member (Bid), nuclear translocation of mitochondria-derived DNA fragmentation factors (apoptosis-inducing factor and endonuclease G), DNA fragmentation, and nuclear condensation in pyramidal neurons. These apoptotic responses were significantly augmented by calpastatin deficiency. Consistently calpastatin overexpression suppressed them. No evidence of caspase-3 activation was detected. Our results demonstrated that calpain mediates excitotoxic signals through mobilization of proapoptotic factors in a caspase-independent manner. These mutant mice will serve as useful tools for investigating calpain involvement in various diseases. | | | 15691848
|
Mitochondrial endonuclease G is important for apoptosis in C. elegans. Parrish, J, et al. Nature, 412: 90-4 (2001)
2001
Show Abstract
Programmed cell death (apoptosis) is a tightly regulated process of cell disassembly in which dying cells and their nuclei shrink and fragment and the chromosomal DNA is degraded into internucleosomal repeats. Here we report the characterization of the cps-6 gene, which appears to function downstream of, or in parallel to, the cell-death protease CED-3 of Caenorhabditis elegans in the DNA degradation process during apoptosis. cps-6 encodes a homologue of human mitochondrial endonuclease G, and its protein product similarly localizes to mitochondria in C. elegans. Reduction of cps-6 activity caused by a genetic mutation or RNA-mediated interference (RNAi) affects normal DNA degradation, as revealed by increased staining in a TUNEL assay, and results in delayed appearance of cell corpses during development in C. elegans. This observation provides in vivo evidence that the DNA degradation process is important for proper progression of apoptosis. CPS-6 is the first mitochondrial protein identified to be involved in programmed cell death in C. elegans, underscoring the conserved and important role of mitochondria in the execution of apoptosis. | | | 11452313
|
Endonuclease G is an apoptotic DNase when released from mitochondria. Li, L Y, et al. Nature, 412: 95-9 (2001)
2001
Show Abstract
Nucleosomal fragmentation of DNA is a hallmark of apoptosis (programmed cell death), and results from the activation of nucleases in cells undergoing apoptosis. One such nuclease, DNA fragmentation factor (DFF, a caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD)), is capable of inducing DNA fragmentation and chromatin condensation after cleavage by caspase-3 (refs 2,3,4). However, although transgenic mice lacking DFF45 or its caspase cleavage site have significantly reduced DNA fragmentation, these mice still show residual DNA fragmentation and are phenotypically normal. Here we report the identification and characterization of another nuclease that is specifically activated by apoptotic stimuli and is able to induce nucleosomal fragmentation of DNA in fibroblast cells from embryonic mice lacking DFF. This nuclease is endonuclease G (endoG), a mitochondrion-specific nuclease that translocates to the nucleus during apoptosis. Once released from mitochondria, endoG cleaves chromatin DNA into nucleosomal fragments independently of caspases. Therefore, endoG represents a caspase-independent apoptotic pathway initiated from the mitochondria. | | | 11452314
|