Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes. Eskeland, R; Freyer, E; Leeb, M; Wutz, A; Bickmore, WA Cold Spring Harbor symposia on quantitative biology
75
71-8
2010
Show Abstract
Mechanisms controlling higher-order chromatin structure or chromatin compaction and linking this to gene regulation are poorly understood. Previously, we had shown that the PRC1 Polycomb repressive complex is required to maintain a compact chromatin state at Polycomb target loci in embryonic stem cells (ESCs) of the mouse and that this activity, together with the ability to repress target gene expression, is surprisingly independent of the histone ubiquitination activity of the Ring1B component of PRC1. Here we investigate and discuss the role of another histone modification--histone acetylation--in Polycomb function. We show that inhibition of histone deacetylases leads to some decompaction of Hox loci and suggest that histone deacetylation has a role in the pathway of PRC1-mediated chromatin compaction. We discuss whether PRC1 and histone hypoacetylation function together to establish a chromatin template at which stable nucleosomes act to antagonize transcriptional elongation. | 21502416
|
Rybp, a polycomb complex-associated protein, is required for mouse eye development. Pirity, MK; Wang, WL; Wolf, LV; Tamm, ER; Schreiber-Agus, N; Cvekl, A BMC developmental biology
7
39
2007
Show Abstract
Rybp (Ring1 and YY1 binding protein) is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of Rybp in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for Rybp in ocular development using four in vivo mouse models which resulted in either the ablation or overexpression of Rybp.Our results demonstrate that loss of a single Rybp allele in conventional knockout mice often resulted in retinal coloboma, an incomplete closure of the optic fissure, characterized by perturbed localization of Pax6 but not of Pax2. In addition, about one half of Rybp-/- less than -greater than Rybp+/+ chimeric embryos also developed retinal colobomas and malformed lenses. Tissue-specific transgenic overexpression of Rybp in the lens resulted in abnormal fiber cell differentiation and severe lens opacification with increased levels of AP-2alpha and Sox2, and reduced levels of betaA4-crystallin gene expression. Ubiquitous transgenic overexpression of Rybp in the entire eye caused abnormal retinal folds, corneal neovascularization, and lens opacification. Additional changes included defects in anterior eye development.These studies establish Rybp as a novel gene that has been associated with coloboma. Other genes linked to coloboma encode various classes of transcription factors such as BCOR, CBP, Chx10, Pax2, Pax6, Six3, Ski, Vax1 and Vax2. We propose that the multiple functions for Rybp in regulating mouse retinal and lens development are mediated by genetic, epigenetic and physical interactions between these genes and proteins. | 17470285
|
Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Gearhart, MD; Corcoran, CM; Wamstad, JA; Bardwell, VJ Molecular and cellular biology
26
6880-9
2006
Show Abstract
The corepressor BCOR potentiates transcriptional repression by the proto-oncoprotein BCL6 and suppresses the transcriptional activity of a common mixed-lineage leukemia fusion partner, AF9. Mutations in human BCOR cause male lethal, X-linked oculofaciocardiodental syndrome. We identified a BCOR complex containing Polycomb group (PcG) and Skp-Cullin-F-box subcomplexes. The PcG proteins include RING1, RYBP, NSPC1, a Posterior Sex Combs homolog, and RNF2, an E3 ligase for the mono-ubiquitylation of H2A. BCOR complex components and mono-ubiquitylated H2A localize to BCL6 targets, indicating that the BCOR complex employs PcG proteins to expand the repertoire of enzymatic activities that can be recruited by BCL6. This also suggests that BCL6 can target PcG proteins to DNA. In addition, the BCOR complex contains components of a second ubiquitin E3 ligase, namely, SKP1 and FBXL10 (JHDM1B). We show that BCOR coimmunoprecipitates isoforms of FBXL10 which contain a JmjC domain that recently has been determined to have histone H3K36 demethylase activity. The recruitment of two distinct classes of E3 ubiquitin ligases and a histone demethylase by BCOR suggests that BCOR uses a unique combination of epigenetic modifications to direct gene silencing. Full Text Article | 16943429
|
Rybp/DEDAF is required for early postimplantation and for central nervous system development. Pirity, MK; Locker, J; Schreiber-Agus, N Molecular and cellular biology
25
7193-202
2005
Show Abstract
The Rybp/DEDAF protein has been implicated in both transcriptional regulation and apoptotic signaling, but its precise molecular function is unclear. To determine the physiological role of Rybp, we analyzed its expression during mouse development and generated mice carrying a targeted deletion of Rybp using homologous recombination in embryonic stem cells. Rybp was found to be broadly expressed during embryogenesis and was particularly abundant in extraembryonic tissues, including trophoblast giant cells. Consistent with this result, rybp homozygous null embryos exhibited lethality at the early postimplantation stage. At this time, Rybp was essential for survival of the embryo, for the establishment of functional extraembryonic structures, and for the execution of full decidualization. Through the use of a chimeric approach, the embryonic lethal phenotype was circumvented and a role for Rybp in central nervous system development was uncovered. Specifically, the presence of Rybp-deficient cells resulted in marked forebrain overgrowth and in localized regions of disrupted neural tube closure. Functions for Rybp in the brain also were supported by the finding of exencephaly in about 15% of rybp heterozygous mutant embryos, and by Rybp's distinct neural expression pattern. Together, these findings support critical roles for Rybp at multiple stages of mouse embryogenesis. | 16055728
|
The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm. Zheng, L, et al. J. Biol. Chem., 276: 31945-52 (2001)
2001
Show Abstract
Homophilic interactions of death effector domains (DEDs) are crucial for the signaling pathways of death receptor-mediated apoptosis. The machinery that regulates proper oligomerization and autoactivation of procaspase-8 and/or procaspase-10 during T lymphocyte activation determines whether the cells will undergo caspase-mediated apoptosis or proliferation. We screened a yeast two-hybrid library by using the DEDs contained in the prodomains of procaspase-8 and procaspase-10 and isolated a DED-associated factor (DEDAF) that interacts with several DED-containing proteins but does not itself contain a DED. DEDAF is highly conserved between human and mouse (98% amino acid identity) and is homologous to a nuclear regulatory protein YAF-2. DEDAF is expressed at the highest levels in lymphoid tissues and placenta. DEDAF interacts with FADD, procaspase-8, and procaspase-10 in the cytosol as well as with the DED-containing DNA-binding protein (DEDD) in the nucleus. At the cell membrane, DEDAF augmented the formation of CD95-FADD-caspase-8 complexes and enhanced death receptor- as well as DED-mediated apoptosis. In the nucleus, DEDAF caused the DEDD protein to relocalize from subnuclear structures to a diffuse distribution in the nucleoplasm. Our data therefore suggest that DEDAF may be involved in the regulation of both cytoplasmic and nuclear events of apoptosis. | 11395500
|
RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. García, E, et al. EMBO J., 18: 3404-18 (1999)
1999
Show Abstract
The products of the Polycomb group (PcG) of genes are necessary for the maintenance of transcriptional repression of a number of important developmental genes, including the homeotic genes. A two-hybrid screen was used to search for putative new members of the PcG of genes in mammals. We have identified a new Zn finger protein, RYBP, which interacts directly with both Ring1 proteins (Ring1A and Ring1B) and with M33, two mutually interacting sets of proteins of the mammalian Polycomb complex. Ring1 binds RYBP and M33 through the same C-terminal domain, whereas the RYBP-M33 interaction takes place through an M33 domain not involved in Ring1 binding. RYBP also interacts directly with YY1, a transcription factor partially related to the product of the Drosophila pleiohomeotic gene. In addition, we show here that RYBP acts as a transcriptional repressor in transiently transfected cells. Finally, RYBP shows a dynamic expression pattern during embryogenesis which initially overlaps partially that of Ring1A in the central nervous system, and later becomes ubiquitous. Taken together, these data suggest that RYBP may play a relevant role in PcG function in mammals. | 10369680
|