Hypertrophy in the Distal Convoluted Tubule of an 11β-Hydroxysteroid Dehydrogenase Type 2 Knockout Model. Hunter, RW; Ivy, JR; Flatman, PW; Kenyon, CJ; Craigie, E; Mullins, LJ; Bailey, MA; Mullins, JJ Journal of the American Society of Nephrology : JASN
26
1537-48
2015
Show Abstract
Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11βHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids. | | 25349206
|
Renal tubule angiotensin II type 1 receptor-associated protein promotes natriuresis and inhibits salt-sensitive blood pressure elevation. Wakui, H; Uneda, K; Tamura, K; Ohsawa, M; Azushima, K; Kobayashi, R; Ohki, K; Dejima, T; Kanaoka, T; Tsurumi-Ikeya, Y; Matsuda, M; Haruhara, K; Nishiyama, A; Yabana, M; Fujikawa, T; Yamashita, A; Umemura, S Journal of the American Heart Association
4
e001594
2015
Show Abstract
Angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP; Agtrap gene) promotes AT1R internalization along with suppression of pathological AT1R activation. In this study, we examined whether enhancement of ATRAP in the renal distal tubules affects sodium handling and blood pressure regulation in response to high salt (HS) loading, using ATRAP transgenic mice on a salt-sensitive C57BL/6J background.Renal ATRAP transgenic (rATRAP-Tg) mice, which exhibit renal tubule-dominant ATRAP enhancement, and their wild-type littermate C57BL/6J mice on a normal salt diet (0.3% NaCl) at baseline were subjected to dietary HS loading (4% NaCl) for 7 days. In rATRAP-Tg mice, the dietary HS loading-mediated blood pressure elevation was suppressed compared with wild-type mice, despite similar baseline blood pressure. Although renal angiotensin II level was comparable in rATRAP-Tg and wild-type mice with and without HS loading, urinary sodium excretion in response to HS loading was significantly enhanced in the rATRAP-Tg mice. In addition, functional transport activity of the amiloride-sensitive epithelial Na(+) channel was significantly decreased under saline volume-expanded conditions in rATRAP-Tg mice compared with wild-type mice, without any evident change in epithelial Na(+) channel protein expression. Plasma membrane AT1R expression in the kidney of rATRAP-Tg mice was decreased compared with wild-type mice.These results demonstrated that distal tubule-dominant enhancement of ATRAP inhibits pathological renal sodium reabsorption and blood pressure elevation in response to HS loading. The findings suggest that ATRAP-mediated modulation of sodium handling in renal distal tubules could be a target of interest in salt-sensitive blood pressure regulation. | | 25792129
|
Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Saisawat, P; Kohl, S; Hilger, AC; Hwang, DY; Yung Gee, H; Dworschak, GC; Tasic, V; Pennimpede, T; Natarajan, S; Sperry, E; Matassa, DS; Stajić, N; Bogdanovic, R; de Blaauw, I; Marcelis, CL; Wijers, CH; Bartels, E; Schmiedeke, E; Schmidt, D; Märzheuser, S; Grasshoff-Derr, S; Holland-Cunz, S; Ludwig, M; Nöthen, MM; Draaken, M; Brosens, E; Heij, H; Tibboel, D; Herrmann, BG; Solomon, BD; de Klein, A; van Rooij, IA; Esposito, F; Reutter, HM; Hildebrandt, F Kidney international
85
1310-7
2014
Show Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease and they are the most frequent cause of end-stage renal disease in children in the US. However, its genetic etiology remains mostly elusive. VACTERL association is a rare disorder that involves congenital abnormalities in multiple organs including the kidney and urinary tract in up to 60% of the cases. By homozygosity mapping and whole-exome resequencing combined with high-throughput mutation analysis by array-based multiplex PCR and next-generation sequencing, we identified recessive mutations in the gene TNF receptor-associated protein 1 (TRAP1) in two families with isolated CAKUT and three families with VACTERL association. TRAP1 is a heat-shock protein 90-related mitochondrial chaperone possibly involved in antiapoptotic and endoplasmic reticulum stress signaling. Trap1 is expressed in renal epithelia of developing mouse kidney E13.5 and in the kidney of adult rats, most prominently in proximal tubules and in thick medullary ascending limbs of Henle's loop. Thus, we identified mutations in TRAP1 as highly likely causing CAKUT or VACTERL association with CAKUT. | Immunofluorescence | 24152966
|
Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. Airik, R; Slaats, GG; Guo, Z; Weiss, AC; Khan, N; Ghosh, A; Hurd, TW; Bekker-Jensen, S; Schrøder, JM; Elledge, SJ; Andersen, JS; Kispert, A; Castelli, M; Boletta, A; Giles, RH; Hildebrandt, F Journal of the American Society of Nephrology : JASN
25
2573-83
2014
Show Abstract
Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8(gt/gt) mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms. | | 24722439
|
Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. Albers, J; Rajski, M; Schönenberger, D; Harlander, S; Schraml, P; von Teichman, A; Georgiev, S; Wild, PJ; Moch, H; Krek, W; Frew, IJ EMBO molecular medicine
5
949-64
2013
Show Abstract
The combinations of genetic alterations that cooperate with von Hippel-Lindau (VHL) mutation to cause clear cell renal cell carcinoma (ccRCC) remain poorly understood. We show that the TP53 tumour suppressor gene is mutated in approximately 9% of human ccRCCs. Combined deletion of Vhl and Trp53 in primary mouse embryo fibroblasts causes proliferative dysregulation and high rates of aneuploidy. Deletion of these genes in the epithelium of the kidney induces the formation of simple cysts, atypical cysts and neoplasms, and deletion in the epithelia of the genital urinary tract leads to dysplasia and tumour formation. Kidney cysts display a reduced frequency of primary cilia and atypical cysts and neoplasms exhibit a pro-proliferative signature including activation of mTORC1 and high expression of Myc, mimicking several cellular and molecular alterations seen in human ccRCC and its precursor lesions. As the majority of ccRCC is associated with functional inactivation of VHL, our findings suggest that for a subset of ccRCC, loss of p53 function represents a critical event in tumour development. | | 23606570
|
Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Zhou, D; Tan, RJ; Lin, L; Zhou, L; Liu, Y Kidney international
84
509-20
2013
Show Abstract
Hepatocyte growth factor is a pleiotrophic protein that promotes injury repair and regeneration in multiple organs. Here, we show that after acute kidney injury (AKI), the HGF receptor, c-met, was induced predominantly in renal tubular epithelium. To investigate the role of tubule-specific induction of c-met in AKI, we generated conditional knockout mice, in which the c-met gene was specifically disrupted in renal tubules. These Ksp-met-/- mice were phenotypically normal and had no appreciable defect in kidney morphology and function. However, in AKI induced by cisplatin or ischemia/reperfusion injury, the loss of tubular c-met substantially aggravated renal injury. Compared with controls, Ksp-met-/- mice displayed higher serum creatinine, more severe morphologic lesions, and increased apoptosis, which was accompanied by an increased expression of Bax and Fas ligand and decreased phosphorylation/activation of Akt. In addition, ablation of c-met in renal tubules promoted chemokine expression and renal inflammation after AKI. Consistently, ectopic expression of hepatocyte growth factor in vivo protected the kidneys against AKI in control mice, but not in Ksp-met-/- counterparts. Thus, our results suggest that tubule-specific c-met signaling is crucial in conferring renal protection after AKI, primarily by its anti-apoptotic and anti-inflammatory mechanisms. | | 23715119
|
Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. Zhou, L; Li, Y; Zhou, D; Tan, RJ; Liu, Y Journal of the American Society of Nephrology : JASN
24
771-85
2013
Show Abstract
Aging is an independent risk factor for CKD, but the molecular mechanisms that link aging and CKD are not well understood. The antiaging protein Klotho may be an endogenous antagonist of Wnt/β-catenin signaling, which promotes fibrogenesis, suggesting that loss of Klotho may contribute to CKD through increased Wnt/β-catenin activity. Here, normal adult kidneys highly expressed Klotho in the tubular epithelium, but various models of nephropathy exhibited markedly less expression of Klotho. Loss of Klotho was closely associated with increased β-catenin in the diseased kidneys, suggesting an inverse correlation between Klotho and canonical Wnt signaling. In vitro, both full-length and secreted Klotho bound to multiple Wnts, including Wnt1, Wnt4, and Wnt7a. Klotho repressed gene transcription induced by Wnt but not by active β-catenin. Furthermore, Klotho blocked Wnt-triggered activation and nuclear translocation of β-catenin, as well as the expression of its target genes in tubular epithelial cells. Investigating potential mediators of Klotho loss in CKD, we found that TGF-β1 suppressed Klotho expression and concomitantly activated β-catenin; conversely, overexpression of Klotho abolished fibrogenic effects of TGF-β1. In two mouse models of CKD induced by unilateral ureteral obstruction or adriamycin, in vivo expression of secreted Klotho inhibited the activation of renal β-catenin and expression of its target genes. Secreted Klotho also suppressed myofibroblast activation, reduced matrix expression, and ameliorated renal fibrosis. Taken together, these results suggest that Klotho is an antagonist of endogenous Wnt/β-catenin activity; therefore, loss of Klotho may contribute to kidney injury by releasing the repression of pathogenic Wnt/β-catenin signaling. | | 23559584
|
KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Hélène Louis-Dit-Picard,Julien Barc,Daniel Trujillano,Stéphanie Miserey-Lenkei,Nabila Bouatia-Naji,Olena Pylypenko,Geneviève Beaurain,Amélie Bonnefond,Olivier Sand,Christophe Simian,Emmanuelle Vidal-Petiot,Christelle Soukaseum,Chantal Mandet,Françoise Broux,Olivier Chabre,Michel Delahousse,Vincent Esnault,Béatrice Fiquet,Pascal Houillier,Corinne Isnard Bagnis,Jens Koenig,Martin Konrad,Paul Landais,Chebel Mourani,Patrick Niaudet,Vincent Probst,Christel Thauvin,Robert J Unwin,Steven D Soroka,Georg Ehret,Stephan Ossowski,Mark Caulfield, ,Patrick Bruneval,Xavier Estivill,Philippe Froguel,Juliette Hadchouel,Jean-Jacques Schott,Xavier Jeunemaitre Nature genetics
44
2012
Show Abstract
Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na(+)-Cl(-) cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure. | | 22406640
|
Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis. Li, Y; Wen, X; Liu, Y Kidney international
81
880-91
2012
Show Abstract
During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after injury. Id1 was induced selectively in degenerated proximal tubule and collecting duct epithelia after injury and was present in both the cytoplasm and nucleus, suggesting shuttling between these two compartments. Interestingly, the upregulation of Id1 was associated with peritubular inflammation in mouse and human nephropathies. In vitro, Id1 potentiated NF-κB signaling and augmented RANTES expression in kidney epithelial cells, which led to an enhanced recruitment of inflammatory cells. Id1 also induced Snail1 expression and triggered tubular epithelial dedifferentiation. In vivo, genetic ablation of Id1 in mice reduced peritubular inflammation and decreased tubular expression of RANTES following ureteral obstruction. Mice lacking Id1 were also protected against myofibroblast activation and matrix expression, leading to a reduced total collagen deposition in obstructive nephropathy. Thus, these results indicate that Id1 shuttles between nucleus and cytoplasm, and promotes peritubular inflammation and tubular epithelial dedifferentiation, suggesting that these two events are intrinsically coupled during renal fibrogenesis. | | 22278018
|
Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Zhou, D; Li, Y; Lin, L; Zhou, L; Igarashi, P; Liu, Y Kidney international
82
537-47
2012
Show Abstract
β-Catenin is a unique intracellular protein functioning as an integral component of the cell-cell adherens complex and a principal signaling protein mediating canonical Wnt signaling. Little is known about its function in adult kidneys in the normal physiologic state or after acute kidney injury (AKI). To study this, we generated conditional knockout mice in which the β-catenin gene was specifically disrupted in renal tubules (Ksp-β-cat-/-). These mice were phenotypically normal with no appreciable defects in kidney morphology and function. In the absence of β-catenin, γ-catenin functionally substituted for it in E-cadherin binding, thereby sustaining the integrity of epithelial adherens junctions in the kidneys. In AKI induced by ischemia reperfusion or folic acid, the loss of tubular β-catenin substantially aggravated renal lesions. Compared with controls, Ksp-β-cat-/- mice displayed higher mortality, elevated serum creatinine, and more severe morphologic injury. Consistently, apoptosis was more prevalent in kidneys of the knockout mice, which was accompanied by increased expression of p53 and Bax, and decreased phosphorylated Akt and survivin. In vitro activation of β-catenin by Wnt1 or stabilization of β-catenin protected tubular epithelial cells from apoptosis, activated Akt, induced survivin, and repressed p53 and Bax expression. Hence, endogenous β-catenin is pivotal for renal tubular protection after AKI by promoting cell survival through multiple mechanisms. | Immunohistochemistry | 22622501
|