GABAA receptor associated proteins: a key factor regulating GABAA receptor function. Chen, Zi-Wei and Olsen, Richard W J. Neurochem., 100: 279-94 (2007)
2007
Show Abstract
gamma-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABA(A) receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABA(A) receptors plays an important role in regulating GABA(A) receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABA(A) receptors, for example, the interaction of GABA(A) receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with gamma subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor gamma2 and beta subunits, Plic-1 with some alpha and beta subunits, radixin with the alpha5 subunit, HAP1 with the beta1 subunit, GABA(A) receptor interacting factor-1 (GRIF-1) with the beta2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the beta3 subunit. These proteins have been shown to play important roles in modulating the activities of GABA(A) receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABA(A) receptors. This article reviews the current studies of GABA(A) receptor intracellular loop-associated proteins. | 17083446
|
Lysosomal turnover of GABARAP-phospholipid conjugate is activated during differentiation of C2C12 cells to myotubes without inactivation of the mTor kinase-signaling pathway. Tanida, Isei, et al. Autophagy, 2: 264-71 (2006)
2006
Show Abstract
Although conjugation of overexpressed GABARP to phospholipid has been reported during starvation-induced autophagy, it is unclear whether endogenous GABARAP-phospholipid conjugation is also activated under starvation conditions. We observed little accumulation of GABARAP-phospholipid conjugate (GABARAP-PL) in mouse liver and kidney under starvation conditions, whereas endogenous LC3-phospholipid conjugate (LC3-II) accumulated. A small amount of endogenous GABARAP-PL was observed in the heart, independent of starvation. In rapamycin-treated HEK293 cells, there was little accumulation of endogenous GABARAP-PL, even in the presence of lysosomal protease-inhibitors, whereas there was significant accumulation of endogenous LC3-II, together with inactivation of the mTor kinase-signaling pathway. In HeLa and C2C12 cells, GABARAP-PL accumulation in the presence of lysosomal protease inhibitors was independent of starvation-induced autophagy, whereas LC3-II accumulation was significant during starvation-induced autophagy. Interestingly, we observed activation of lysosomal turnover of GABARAP-PL during the differentiation of C2C12 cells to myotubes, along with increased lysosomal turnover of LC3-II. Under these conditions, S6 ribosomal protein was still phosphorylated, suggesting that the mTor kinase-signaling pathway is active during the differentiation of C2C12 cells to myotubes, in contrast to starvation-induced autophagy. These results indicated that lysosomal turnover of GABARAP-PL was activated during the differentiation of C2C12 cells to myotubes without inactivation of the mTor kinase-signaling pathway, whereas little lysosomal turnover of GABARAP-PL was activated during starvation-induced autophagy. | 16874098
|
Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Iwata, Atsushi, et al. Proc. Natl. Acad. Sci. U.S.A., 102: 13135-40 (2005)
2005
Show Abstract
CNS neurons are endowed with the ability to recover from cytotoxic insults associated with the accumulation of proteinaceous aggregates in mouse models of polyglutamine disease, but the cellular mechanism underlying this phenomenon is unknown. Here, we show that autophagy is essential for the elimination of aggregated forms of mutant huntingtin and ataxin-1 from the cytoplasmic but not nuclear compartments. Human orthologs of yeast autophagy genes, molecular determinants of autophagic vacuole formation, are recruited to cytoplasmic but not nuclear inclusion bodies in vitro and in vivo. These data indicate that autophagy is a critical component of the cellular clearance of toxic protein aggregates and may help to explain why protein aggregates are more toxic when directed to the nucleus. | 16141322
|