c-Abl activates janus kinase 2 in normal hematopoietic cells. Tao, W; Leng, X; Chakraborty, SN; Ma, H; Arlinghaus, RB The Journal of biological chemistry
289
21463-72
2014
Show Abstract
Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μM imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells. | 24923444
|
Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Salomon, Arthur R, et al. Proc. Natl. Acad. Sci. U.S.A., 100: 443-8 (2003)
2003
Show Abstract
The reversible phosphorylation of tyrosine residues is an important mechanism for modulating biological processes such as cellular signaling, differentiation, and growth, and if deregulated, can result in various types of cancer. Therefore, an understanding of these dynamic cellular processes at the molecular level requires the ability to assess changes in the sites of tyrosine phosphorylation across numerous proteins simultaneously as well as over time. Here we describe a sensitive approach based on multidimensional liquid chromatography/mass spectrometry that enables the rapid identification of numerous sites of tyrosine phosphorylation on a number of different proteins from human whole cell lysates. We used this methodology to follow changes in tyrosine phosphorylation patterns that occur over time during either the activation of human T cells or the inhibition of the oncogenic BCR-ABL fusion product in chronic myelogenous leukemia cells in response to treatment with STI571 (Gleevec). Together, these experiments rapidly identified 64 unique sites of tyrosine phosphorylation on 32 different proteins. Half of these sites have been documented in the literature, validating the merits of our approach, whereas motif analysis suggests that a number of the undocumented sites are also potentially involved in biological pathways. This methodology should enable the rapid generation of new insights into signaling pathways as they occur in states of health and disease. | 12522270
|