Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. Humphries, AC; Donnelly, SK; Way, M Journal of cell science
127
673-85
2014
Show Abstract
Vaccinia virus enhances its cell-to-cell spread by inducing Arp2/3-dependent actin polymerisation. This process is initiated by Src- and Abl-mediated phosphorylation of the viral transmembrane protein A36, leading to recruitment of a signalling network consisting of Grb2, Nck, WIP and N-WASP. Nck is a potent activator of N-WASP-Arp2/3-dependent actin polymerisation. However, recent observations demonstrate that an interaction between Nck and N-WASP is not required for vaccinia actin tail formation. We found that Cdc42 cooperates with Nck to promote actin tail formation by stabilising N-WASP beneath the virus. Cdc42 activation is mediated by the Rho guanine-nucleotide-exchange factor (GEF) intersectin-1 (ITSN1), which is recruited to the virus prior to its actin-based motility. Moreover, Cdc42, ITSN1 and N-WASP function collaboratively in a feed-forward loop to promote vaccinia-induced actin polymerisation. Outside the context of infection, we demonstrate that ITSN1 also functions together with Cdc42, Nck and N-WASP during phagocytosis mediated by the Fc gamma receptor. Our observations suggest that ITSN1 is an important general regulator of Cdc42-, Nck- and N-WASP-dependent actin polymerisation. | | 24284073
|
Coordinated activation of the Rac-GAP β2-chimaerin by an atypical proline-rich domain and diacylglycerol. Gutierrez-Uzquiza, A; Colon-Gonzalez, F; Leonard, TA; Canagarajah, BJ; Wang, H; Mayer, BJ; Hurley, JH; Kazanietz, MG Nature communications
4
1849
2013
Show Abstract
Chimaerins, a family of GTPase activating proteins for the small G-protein Rac, have been implicated in development, neuritogenesis and cancer. These Rac-GTPase activating proteins are regulated by the lipid second messenger diacylglycerol generated by tyrosine kinases such as the epidermal growth factor receptor. Here we identify an atypical proline-rich motif in chimaerins that binds to the adaptor protein Nck1. Unlike most Nck1 partners, chimaerins bind to the third SH3 domain of Nck1. This association is mediated by electrostatic interactions of basic residues within the Pro-rich motif with acidic clusters in the SH3 domain. Epidermal growth factor promotes the binding of β2-chimaerin to Nck1 in the cell periphery in a diacylglycerol-dependent manner. Moreover, β2-chimaerin translocation to the plasma membrane and its peripheral association with Rac1 requires Nck1. Our studies underscore a coordinated mechanism for β2-chimaerin activation that involves lipid interactions via the C1 domain and protein-protein interactions via the N-terminal proline-rich region. | | 23673634
|
Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain. Pesti, S; Balázs, A; Udupa, R; Szabó, B; Fekete, A; Bőgel, G; Buday, L Cell communication and signaling : CCS
10
36
2012
Show Abstract
Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain. | | 23181695
|
F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. João V Cordeiro,Susana Guerra,Yoshiki Arakawa,Mark P Dodding,Mariano Esteban,Michael Way PloS one
4
2009
Show Abstract
The cortical actin cytoskeleton beneath the plasma membrane represents a physical barrier that vaccinia virus has to overcome during its exit from an infected cell. Previous observations using overexpression and pharmacological approaches suggest that vaccinia enhances its release by modulating the cortical actin cytoskeleton by inhibiting RhoA signalling using the viral protein F11. We have now examined the role of F11 and its ability to interact with RhoA to inhibit its downstream signalling in the spread of vaccinia infection both in vitro and in vivo. Live cell imaging over 48 hours reveals that loss of F11 or its ability to bind RhoA dramatically reduces the rate of cell-to-cell spread of the virus in a cell monolayer. Cells infected with the DeltaF11L virus also maintained their cell-to-cell contacts, and did not undergo virus-induced motility as observed during wild-type infections. The DeltaF11L virus is also attenuated in intranasal mouse models of infection, as it is impaired in its ability to spread from the initial sites of infection to the lungs and spleen. Loss of the ability of F11 to bind RhoA also reduces viral spread in vivo. Our results clearly establish that viral-mediated inhibition of RhoA signalling can enhance the spread of infection not only in cell monolayers, but also in vivo. Full Text Article | | 20041165
|
p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. Lorena A Puto, Kersi Pestonjamasp, Charles C King, Gary M Bokoch, Lorena A Puto, Kersi Pestonjamasp, Charles C King, Gary M Bokoch The Journal of biological chemistry
278
9388-93
2003
Show Abstract
A variety of intracellular signaling pathways are linked to cell surface receptor signaling through their recruitment by Src homology 2 (SH2)/SH3-containing adapter molecules. p21-activated kinase 1 (PAK1) is an effector of Rac/Cdc42 GTPases that has been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. In this study, we describe the specific interaction of PAK1 with the Grb2 adapter protein both in vitro and in vivo. We identify the site of this interaction as the second proline-rich SH3 binding domain of PAK1. Stimulation of the epidermal growth factor receptor (EGFR) in HaCaT cells enhances the level of EGFR-associated PAK1 and Grb2, although the PAK1-Grb2 association is itself independent of this stimulation. A cell-permeant TAT-tagged peptide encompassing the second proline-rich SH3 binding domain of PAK1 simultaneously blocked Grb2 and activated EGFR association with PAK1, in vitro and in vivo, indicating that Grb2 mediates the interaction of PAK1 with the activated EGFR. Blockade of this interaction decreased the epidermal growth factor-induced extension of membrane lamellae. Thus Grb2 may serve as an important mechanism for linking downstream PAK signaling to various upstream pathways. | Immunoblotting (Western) | 12522133
|
Role of Dok1 in cell signaling mediated by RET tyrosine kinase Murakami, H., et al J Biol Chem, 277:32781-90 (2002)
2002
| Immunoblotting (Western) | 12087092
|
Src homology region 2 domain-containing phosphatase 1 positively regulates B cell receptor-induced apoptosis by modulating association of B cell linker protein with Nck and activation of c-Jun NH2-terminal kinase. Mizuno, Kazuya, et al. J. Immunol., 169: 778-86 (2002)
2002
Show Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP-1) is a key mediator in lymphocyte differentiation, proliferation, and activation. We previously showed that B cell linker protein (BLNK) is a physiological substrate of SHP-1 and that B cell receptor (BCR)-induced activation of c-Jun NH(2)-terminal kinase (JNK) is significantly enhanced in cells expressing a form of SHP-1 lacking phosphatase activity (SHP-1-C/S). In this study, we confirmed that SHP-1 also exerts negative regulatory effects on JNK activation in splenic B cells. To further clarify the role of SHP-1 in B cells, we examined how dephosphorylation of BLNK by SHP-1 affects downstream signaling events. When a BLNK mutant (BLNK Delta N) lacking the NH(2)-terminal region, which contains four tyrosine residues, was introduced in SHP-1-C/S-expressing WEHI-231 cells, the enhanced JNK activation was inhibited. Among candidate proteins likely to regulate JNK activation through BLNK, Nck adaptor protein was found to associate with tyrosine-phosphorylated BLNK and this association was more pronounced in SHP-1-C/S-expressing cells. Furthermore, expression of dominant-negative forms of Nck inhibited BCR-induced JNK activation. Finally, BCR-induced apoptosis was suppressed in SHP-1-C/S-expressing cells and coexpression of Nck SH2 mutants or a dominant-negative form of SEK1 reversed this phenotype. Collectively, these results suggest that SHP-1 acts on BLNK, modulating its association with Nck, which in turn negatively regulates JNK activation but exerts a positive effect on apoptosis. | Immunoblotting (Western) | 12097380
|
The adaptor protein Nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism Li, X., et al J Biol Chem, 277:37788-97 (2002)
2002
| Immunoblotting (Western) | 12149262
|
Angiotensin II-induced stimulation of p21-activated kinase and c-Jun NH2-terminal kinase is mediated by Rac1 and Nck. Schmitz, U; Thömmes, K; Beier, I; Wagner, W; Sachinidis, A; Düsing, R; Vetter, H The Journal of biological chemistry
276
22003-10
2001
Show Abstract
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses. | Immunoblotting (Western) | 11279250
|
Independent SH2-binding sites mediate interaction of Dok-related protein with RasGTPase-activating protein and Nck Lock, P., et al J Biol Chem, 274:22775-84 (1999)
1999
| Immunoblotting (Western) | 10428862
|