APOLLON protein promotes early mitotic CYCLIN A degradation independent of the spindle assembly checkpoint. Kikuchi, R; Ohata, H; Ohoka, N; Kawabata, A; Naito, M The Journal of biological chemistry
289
3457-67
2014
Show Abstract
In the mammalian cell cycle, both CYCLIN A and CYCLIN B are required for entry into mitosis, and their elimination is also essential to complete the process. During mitosis, CYCLIN A and CYCLIN B are ubiquitylated by the anaphase-promoting complex/cyclosome (APC/C) and then subjected to proteasomal degradation. However, CYCLIN A, but not CYCLIN B, begins to be degraded in the prometaphase when APC/C is inactivated by the spindle assembly checkpoint (SAC). Here, we show that APOLLON (also known as BRUCE or BIRC6) plays a role in SAC-independent degradation of CYCLIN A in early mitosis. APPOLON interacts with CYCLIN A that is not associated with cyclin-dependent kinases. APPOLON also interacts with APC/C, and it facilitates CYCLIN A ubiquitylation. In APPOLON-deficient cells, mitotic degradation of CYCLIN A is delayed, and the total, but not the cyclin-dependent kinase-bound, CYCLIN A level was increased. We propose APPOLON to be a novel regulator of mitotic CYCLIN A degradation independent of SAC. | 24302728
|
An IGF1/insulin receptor substrate-1 pathway stimulates a mitotic kinase (cdk1) in the uterine epithelium during the proliferative response to estradiol. Walker, MP; Diaugustine, RP; Zeringue, E; Bunger, MK; Schmitt, M; Archer, TK; Richards, RG The Journal of endocrinology
207
225-35
2010
Show Abstract
Estrogens are potent mitogens for some target organs, such as the uterus, and cancers that develop in this organ might be linked to the proliferative action of these hormones. However, the mechanism by which estrogens influence the cell cycle machinery is not known. We found that a null mutation for the insulin receptor substrate (IRS)-1, a docking protein that is important for IGF1 signaling, compromised hormone-induced mitosis in the uterine epithelium; BrdU incorporation was not affected. This selective effect on mitosis was associated with a reduction in uterine cyclin B-associated kinase activity; cyclin A-associated kinase activity was not changed. The null mutation also reduced the extent of hormone-induced phosphorylation of endogenous uterine histone H1, as determined with phospho-specific antiserum. Uterine epithelial cyclin dependent kinase (cdk)1 was induced in response to hormone, but the level of the kinase protein, as determined by immunoblotting, was noticeably less in the irs1 null mutant than that in the wild-type (WT) mouse, especially around the time of peak mitosis (24 h). Since IRS-1 binds/activates phosphatidylinositol 3-kinase (PI3K), the absence of this docking protein could impair signaling of a known pathway downstream of AKT that stimulates translation of cell cycle components. Indeed, we found that phosphorylation of uterine AKT (Ser473) in irs1 null mutants was less than that in WTs following treatment. Based on earlier studies, it is also possible that an IGF1/IRS-1/PI3K/AKT pathway regulates posttranslational changes in cdk1. This model may provide insights as to how a growth factor pathway can mediate hormone action on cell proliferation. | 20798132
|